
A System for Using 3d Animations in Live

Performances

University of Oulu
Department of Information Processing Sciences
Toni Alatalo
A System for Using 3d Animations
in Live Performances

2

Abstract

This master’s thesis addresses the problem of using computer based systems for

visualisations in live performances. A prototype system for animation control revealed points

of views in the areas in controlling multiple entities in many ways at the same time, and in

mapping controls to actions.

In this case, the constructed system was aimed at controlling 3d character animations and

implemented in Python using the API provided by an interactive 3d graphics suite called

Blender. The first real use of the solution was in a music/dance event during the Oulu music

video festival in August 2003, and this study is limited to that early phase of development

with discussions about future challenges and possibilities.

The system basically worked, proving the central model — featuring untypical so-called

event objects, which are used to implement all possible actions in a scene — viable. However,

in the evaluation major restructuring is proposed. Also, the prototyping brought up severe

limitations with the selected engine, which has later resulted to both fixes in that engine

and use of other engines. As a conceptual result, the use of high-level variables such as the

amount of difference in a scene is identified as a powerful tool, explored with the real-time

controlled variance in the animation of so-called clones in this system, and with possibly fruitful

theoretical underpinnings found in gestalt theory.

3

Contents

1 Introduction — computer based systems for live performances 5

2 The Research Method Used — Constructive Research / Design Science 7

3 Related Work — Systems for Live Performances and Character Animation 10

3.1 Software Applications for Visual Live Performances 10

3.2 Character animation . 12

4 Requirements for the System . 13

4.1 Locus of Control . 14

4.2 Requirements for 3d character animation . 15

4.3 Requirements set by the operating environment 15

4.4 Technical requirements . 17

4.5 Features wish-list . 17

4.6 Selected primary requirements . 17

5 The Design and Implementation . 17

5.1 Selecting the 3d engine . 18

5.2 Blender and its game engine . 19

5.3 General architecture . 20

5.4 The Class Library . 21

5.4.1 High-level Events map Controls to Actions 21

5.4.2 Movers in Scenes . 24

5.4.3 The Animation System — working around GameBlender peculiarities . . . 28

5.4.4 Clones . 29

5.4.5 Direct manipulation of bones . 31

5.4.6 Controllers . 31

5.4.7 Time . 31

5.4.8 Camera control . 32

5.4.9 Missing elements . 34

5.5 A setup file . 35

6 Evaluation . 36

6.1 Model / system (in itself & compared to others) 36

6.1.1 Comparison of the event system with others 37

6.1.2 Cognitive, user centered and authoring issues 38

6.2 Usage procedures . 41

6.2.1 Having the Data in Blender . 42

4

6.2.2 Configuring Blender objects for Mover . 42

6.2.3 Making the setup . 43

6.3 Use of the prototype . 44

6.3.1 VJing In Time Tunnel X . 44

6.3.2 Peer Review: Perceptions of Fellow VJ Application Developers 45

6.3.3 A remark from a Puppet-maker . 45

6.4 Use for non-performance purposes in the Wireless Airguitar project 46

6.5 Component re-use . 46

6.6 Review of the research questions . 47

7 Future Development . 48

7.1 Refactoring the core . 48

7.2 Different possible directions with various technologies 49

7.2.1 Authoring for non-programmers via Blender-integration (’BlenderVJ’) . . . 49

7.2.2 Good programmability of high-level features with Soya (’Play’) 50

7.2.3 Distributed system using VOS and/or Twisted (’DanceWorld’) 51

7.3 Strategies for the interplay of the different areas 52

8 Conclusions . 53

5

1 Introduction — computer based systems for live

performances

“It will work out somehow, it’s theatre!”

—(quote from Shakespear in love, as explained by Joel Ryan of STEIM.)

Live events — real time action, where what happens in the moment is what counts — can be
seen as quite remote and foreign to the areas where use of complex computer systems usually
takes place, such as office work. Instead of preparing documents for future uses, the live use must
produce meaningful symbols (or symbol manipulations) instantly. One major area where computer
based systems are used in real-time are controlling systems, such as aviation traffic conrol which
is essentially coordination, or machines in industrial production. Here the focus is, instead, on
presentation systems, which are used to control a show for an audience.

Surely, the problem of presentations is also addressed by the common production suites, which
provide tools for preparing and showing what are commonly referred as digital “slides”. These may
include rich media but the act of performing, presenting them, is typically reduced to proceeding
along a strict sequence, i.e. clicking a button to get the next slide, or in a more fine-grained way, to
the next part of the current slide. Even in an interesting recent tool for interactive presentations,
where the ’slides’ are programmed and can hence include complex behaviour as e.g. dynamic
diagrams, the presenting is about simple proceeding in a sequence (Zongker & Salesin 2003)1. A
reasonable motivation for this is that when giving presentations it is most important to be able to
focus on the speaking, that the pre-made sequence with the key points often supports.

In the use cases for the systems in this study, the focus is solely on the visual output of the system.
The user focuses entirely on producing interesting visualisations, not having to do anything else,
and often being even out of the view or at least focus of the audience. The aim is at more complex
models, providing several degrees of freedom for even improvised action, enabling new meanings
to emerge “as it happens”.

Instead of trying to make a program perform, the goal is enabling rich interaction for the user —
subscribing to the metaphor of instrument making (Puckette 1991). In this view, live performing
provides an interesting area of computer use that is at the same time very free, but also very
demanding. That is, on the one hand, for the systems for live performing there are few rules that
can not be broken: almost anything can be tried out. They are not security critical in the sense that
e.g. banking or health-care systems are, so experimental architectures and unconventional ways
of use can be introduced without unacceptable risks. But, on the other hand, they are mission
critical in the sense that they must be highly relevant. They must be useful and dependable in the
very intense usage setting, a live show, and enable contributing somehing very rich and interesting.
Live performances are valuable per se, but maybe this combination of endless possibilities and high
demands can give birth to something that has applicability in other settings too.

Apart from office work and presentations, there are other areas of research that take us nearer
to the focus of this study. The system described here is basically about show, the usage could
fairly be described as entertainment (although the underlying motivations might differ, and that
whole concept is contradictory). There — in the traditions and innovations of theatre, dance and

1This was also the case in a separate example, where a game programming library was used to author a graphically
intensive presentation, namely the Psyco (a Python JIT-compiler) presentation in the ACCU 2004 conference, using
the Pygame library. For further information see http://psyco.sourceforge.net/

http://psyco.sourceforge.net/

6

music — lives the notion of live performing. In these performing arts, multitudes of techniques
have been taken into use throughout times: costumes to dress according to a role, instruments
to produce different sounds and lights and decorations to create the atmosphere etc. Instead
of a complete review and conceptual analysis of performing (or any) arts, however, this study
presents the construction of a system addressing such usage. The idea is to use the making of the
first prototype to identify interesting problem areas where more comprehensive literature research
could be used to find solutions in future work.

In an overview model of interactive arts (Dannenberg & Bates 1995), the systems are seen to
compose of four main components: 1. a human artist, 2. the ’instrument’ (there: an artistically
competent agent that realizes the artist’s intentions), 3. interaction, including input from human
players and output from the system and 4. an optional audience. A differentiating dimension is
identified depending on whether the focus is on the a) process, where there may be no audience
at all, but e.g. amateurs interacting with the system, or on b) product, where there’s likely to be
a highly skilled player using the system for an audience, that can enjoy the performance without
knowing the process (Dannenberg & Bates 1995). In this work, the system development is made
with the latter area in focus, but as noted by the authors of that model, many works include
aspects of both ends of the continuum, and the implementation described here may be used for
the former purpose as well, i.e. for playing without an audience.

Before proceeding within the topic of performing art systems, two related areas of research are
introduced (they may also be seen seen as one from two angles), to clarifiy the similarities and
differences of those areas to the one in focus here.

Firstly, the entertainment industry has during the past near decades embraced computer-based
systems, as what may be called digital media , in breath-taking efforts that manifest strongest
probably in production and distribution of movies. The applications there vary from non-linear
editing of traditionally filmed material to complete computer-based animation, 3d special effects
in cinemaphotographed scenes being a common combination of both. However, this has had only
a little or no effect to the event of seeing a movie in the sense that it still comes down to watching
serieses of images and listening to the accompanying sounds. Despite this, the basic techniques
in computer graphics that this development has partially driven, are becoming applicaple in live
performances, too. And this brings us to the other part of this field, which in a way surprisingly
is (or may be seen as) technologically almost identical to what is needed for this study.

Computer games today apply several technologies developed earlier for production use elsewhere,
such as a) film production and b) scientific visualisation, but with the same strong and challenging
requirement as in live performing: perceived real-time. In fast paced action this is taken to extreme:
in so-called first person shooters gamers need to go far beyond the 25fps of TV up to 70fps or more
to survive, and arcade games may reach 200fps. For the purposes of this study, the European TV
standard of 25fps is assumed adequate (it is also the maximum when using analog video, as was the
case in the first use the prototype described here). Game technology achieves this by two means
that make it distinct from the aforementioned non-real time areas; a) the visual quality is lower
than in films b) scientific accuracy is neglected.

Finally, the relations to people open the differences of games versus performance software that are
the key to the design goals that will be described in the following chapters. To put it brief and
simple, games are usually challening in the way that it’s relatively obvious what to do, but it’s
difficult to actually pull through the planned actions even if they are dramaturgically simple (like
jumping to a platform or keeping a car on the road), so that success is rewarding to the player. In the

7

terms of the aforementioned overview of interactive arts, the focus is on the process (Dannenberg
& Bates 1995). For performing, even complex things should be easy to do and well under control,
so that experiences or sensations could be provided for other people, i.e. the focus is on the product
(Dannenberg & Bates 1995). The metaphor used is instrument making (Puckette 1991) — like a
musician, the author wishes to have a powerful tool that may be difficult to learn at first, but must
have enough flexibility for the performer to be able to create new meaningful compositions with it.
So even though game technology is very close the needs in this study, the subject is actually about
diverging from the goals of gaming. Specifics of this will be discussed along with the design, with
the notion of locus of control as an attempt to clarify some ideas about making game-like scenes
for shows, that are quite different from actual games.

Within this framework, the focus in work is creating a system for using 3d character animations
in live performances. The motivation basically is that the author had rewarding experiences from
using video content with interestingly moving people in VJ gigs, and he had enjoyed controlling
them within the limitations of 1-dimensional time control (known as video scrubbing or scrathing)
that video has. Existing computer game technologies feature real-time controls of character
animations with numerous degrees of freedom, but no such system existed for performance use.
So this system was necessary to be able to try it — experiment and learn from the experiences, to
find out more about what it all is about. The system is called KyperMover and it is released as
open source software on the Kyperjokki VJ engine Wiki.

The rest of this master thesis is organized as follows: first, the research method used is described
and the research questions are presented. Then a look is taken on general requirements and related
work, i.e. other systems for live performances, including some earlier work by the author. The
pinned down requirements and the process of constructing the new system is described in chapter
three. Chapter four presents the design and implementation of the system, focusing on the issues
of control that are identified as a central problem area. Then the system is evaluated, based
on its functioning and the experience from use of the prototype in an actual event. Chapter 7
discusses future development, from refactoring the core of the system to different areas where new
functionality would be interesting. In the end, overall conclusions are gathered.

2 The Research Method Used — Constructive Research /

Design Science

Within information systems research, two general branches or paradigms can be separated based
on the nature of the activities and purposes of work done using different methods: a) natural
or behavioral science, which is to develop and validate theories and b) design science, where
innovative artifacts are built and evaluated (Hevner, March, J & Ram 2005). Design science
research is similar to technical constructive research in the classification of Jarvinen (Jarvinen
2003). Further, within the design science paradigm, Hevner et al. emphasize that “researchers
must identify important problems and, informed by prior natural, behavioral and design science
knowledge, create innovative IT artifacts that address them.” In this work, quite unorthodoxically
and certainly controversially, the point of entrance and initial focus was on creating. The idea to
apply such reverse order spun from the unawareness of the possible theoretical issues relevant to
the matter. So the idea was to quickly explore the field by making a prototype, to know what
questions and literatures should be studied to be able to make future versions of the system good.

8

Before continuing with the general requirements and guidelines given in the design science research
methodology literature, a closer look is taken at the research problems and attempted solutions
in this study. For one, questions rise about the importance or relevance of the problem area,
namely visual live performance systems, and this particular system within that area. Revisiting
the characterization of the research area that was already overviewed in the introduction, that
question is answered in two different ways in the following. Firstly (1.) the author views that
live performances are valuable per se. Although they are not considered in information systems
research nor much within software engineering literature, and are quite marginal in the practical
software development (even though an increasing number of tools does exist, as will be shown
in the next chapter on related work), visual live performing is certainly an established activity
in the society in e.g. theatre and dance — and nowadays as videojockeying (VJing) in parties
too, which is the focus of this study. In fact, novelty in itself is considered as a criteria when
judging the relevance of design science research, i.e. when information technology is applied in
areas “not previously believed to be amendable to IT support” (Markus et. al. 2002) in (Hevner
et al. 2005). Given that, what is the motivation for creating this new system, then? As mentioned
in the introduction, and as will be explored in more detail in chapter 4 to define requirements
for the system, the author wanted this system for experimenting with more degrees of freedom in
using character animations in visualisations. Based on succesful usage of such video material, and
the fact that suitable underlying technologies had already been developed for games, there was
the opportunity to get to experiment with a new way of doing a show, and hence learn from it.
Secondly (2.), as elaborated in the introduction, the author suspects that the simultaneously free
but demanding nature of live performing is a potential place for experimenting with new solutions
that may have more general applicability.

Another question rised by those initial requirements is the degree of being “informed by prior
natural, behavioral and design science knowledge” (Hevner et al. 2005). One problem in this study
is that it has not been very clear what the relevant existing knowledge would be. As stated in
the introduction, the purpose here is to take a first step — build a first prototype and use it — in
order to find out which kinds of questions there actually are, to be better able to identify which
literatures would be fruitful in the search for underlying theories and models to use in the future
development. But this is of course no excuse for omitting the use existing knowledge, and in the
following chapter on related work an overview and analysis of existing similar systems and theories
about them is given. As Hevner et al. further state, in the iterative problem solving process the
initial constructions should be based on known theory. In software development, a form where
that knowledge is embodied are the so-called patterns (Gamma, Helm, Johnson & Vlissides 1993),
and that literature is used as points of reference for the design and implementation presented here.
But the wider literature research on higher level issues, branching out to humanities and art, and
perhaps also deeper into software engineering and computer science, is left for future work and
dealt with only in the discussion chapter of this study.

Besides those initial requirements, research rigor is emphasized as one of the design science
guidelines (Hevner et al. 2005). This refers to the application of rigorous methods in both the
construction and evaluation of the design artifact. However, the authors note that an overemphasis
on rigor may result in loss of relevance, so the approach should be balanced. In this study, both the
construction and evaluation of the system are quite informal. As for construction, the nature of
the programming effort was fit for rapid prototyping, taking as much as possible out of the limited
resources of one programmer during the period less than one month. The method was inspired
by extreme programming or the agile methods movement, emphasizing early and frequent releases

9

(daily), focusing on simple incremental advances in functionality (instead of working on a large
overall design to begin with), and refactoring the system relentlessly while adding new functionality
to come up with an elegant design (Beck 2000). But even the application of this methodology was
not rigorous, as e.g. no unit tests were made, despite the requirements and recommendations in
the literature that suggest even test-driven development. This is due to the author’s unfamiliarity
with test driven development from before at the time, and also the probable difficulties with it in
the selected technical environment. Concerning rigorous evaluation, the focus of this study is on
the build process, making a first prototype, and finding potential areas for enhancement in it. So
this stage is too early for large evalution studies, which would also be too laborous to be performed
in this same work. However, in the chapter on evaluation, initial analysis is made from many
different angles: the system in itself, compared with other systems, as commented by peers and
observations from actual use of the prototype for the intended and other purposes. This should
suffice in giving a whole estimation of the qualities of the constructed artifact to a sufficient extent.

Finally, there is the notion of communicating the results to different audiences. When discussing
information systems research, Hevner et al. identify two audiences: technology-oriented and
management-oriented (Hevner et al. 2005). The requirements for communicating about a design
science study for those audiences are, according to them, that technology-oriented audiences need
a detailed enough description to be able to implement the artifact, and management-oriented
audiences need information for deciding whether their organization should invest in it. The system
in this study is not, however, an organizational information system, and there are differences for
other reasons too.

On one hand, regarding the technically-oriented audience, the artifact is published as open source
software, so to be used as such it does not require re-implementation, and also for differing
implementations the source code of this implementation can be used as a source of information.
Also some of the components may be re-used in other systems, as will be shown later. The need
for the technical audience is viewed more as explaining the design decisions and the motivations
behind them, so that their potential usefulness and degrees of elegance can be judged for both
regarding this and similar systems and applicability in other areas.

On the other hand, as for non-technical audiences, the author has difficulties in imagining any
managers or management-oriented people involved (if not a director in some performance group?).
Instead, potential users of the system are considered. In fact, in a proposed structure of an
information systems design theory thesis or article, Gregor suggests (Gregor 2004) that the chapter
on the description of the system instantiation is similar to documentation.

So two purposes of this thesis are to both document the design and implementation of the system
for developers, and describe it for potential users that do not need to be know about all the
underlying technical details. As for other purposes and audiences, the author can only hope that
the work presents this research area in a way that also people not interested in neither developing
nor using these systems can get an overview, and that reseachers in other areas may find some of
the results interesting.

The main research question is: How to make a system for using 3d character animations in live
performances?

The conditions being, that the time and resources are limited to some weeks of work by one person
(more on the schedule in chapter 5).

Subquestion 1: How to make it so that many things, e.g. several characters, could be controlled
by a single user (performer) in many ways at the same time?

10

Subquestion 2: How to support moving to the music?

These are obviously related to the requirements for the system, which are discussed in more detail
in chapter 4.

3 Related Work — Systems for Live Performances and

Character Animation

Related work is covered here concerning two areas: live performing and character animation.

3.1 Software Applications for Visual Live Performances

Computer-based real-time systems have been used in music performances since the 1970s,
encompassing sound synthesis, algorhitmic compositions, automatic analysis etc., in both non-
interactive and interactive pieces (Lippe 2002). On one end, the systems target automatic analysis
of music played by a performer in real-time, so that the computer system can try to accompany
it (Goto & Muraoka 1997). Also the work presented here targets accompanying music, but with
visuals. So the solutions for automatic music analysis are very applicable in this area of research.
The focus here, however, is not is not to make a fully automated accompanying system for a
performer, but more to make an instrument — just a visual one — for human performers to use.
On the music side this computer-based instrument-making idea was advocated in (Puckette 1991).
A centre in Holland called Steim, the studio for electro-instrumental music, which is dedicated
solely for performing arts and has a long history of electronic instrument development, emphasizes
the use of the body and the idea of touch, referring to how the “knowledge of the fingers or lips” is
crucial in playing musical instruments (http://www.steim.org/). In this work, the control devices
are not addressed directly, so that advise is only kept in mind.

Dance is of course very closely related to this work, namely visual performing with character
animations, because that is what dance is in the sense that the main means of expression is
body movements (albait in dance they are real, versus the virtual ones in this work). One way
to describe the work here is that it is a virtual dance system. Also, especially in contemporary
dance, the use of video has become popular in the recent years. Specifically relevant to this work
are dance pieces where computer-based character animations have been used as an element. One
such piece is Biped by Merce Cunningham, which is exceptionally documented in the computer
science literature, giving us a possibility to examine it here (Abouaf 1999a). The motions for the
virtual dancers in Biped were derived from motion capture data, which was filtered and mapped
onto a skeleton model. Later that was used to generate animations with a look of simplified
hand-drawn chalk drawings. So regarding the the act of performing (and the requirements for the
system for it), pieces like Biped are still just about playback of pre-made video, and hence do not
contribute to the problem in focus here.. However, it should be noted that during the making
of the choreography, Cunningham reportedly uses and has been involved in the development of a
character animation tool (Life Forms), and describes one of it uses as “a memory device”, the main
interest being “as always, in discovery” (Abouaf 1999b). With this in mind a possible application
area for improvisational systems featuring character animation, like the one here aims at being, is
exploring interesting choreographies, and ’writing them down’ for future use.

The most relevant other systems here are of course the ones with the same goal, i.e. tools for
visual live performing, or video jockeying (VJing) as it is called. The bulk of VJ software is, quite

http://www.steim.org/

11

naturally, video players, with capabilities for real-time switching, mixing and time-control. Tools
like this include the popular ArKaos VJ, eXisTenZ, FreeJ and also KyperjokkiWorkPSX made by
the author of this work using the Pixelshox Engine and Studio. Some of these video tools are
plain 2d programs, but a trend has been to add 3d capabilities and to base new tools in hardware
accelerated 3d via OpenGL (see e.g. gephex?) or Direct3D (e.g. Pilgrim) APIs. To give some
overview to these tools before going to the details of the system described in this work, a closer
look to some selected ones follows.

ArKaos VJ is popular commercial VJ tool, that can be used to play back video clips, show still
images and mix and apply effects to them. Clips/images and effects are triggered with the computer
keyboard or via midi controllers. Arkaos includes an event recorder, that saves information about
keypresses during a run to a logfile that can be used to re-render the sequence afterwards (log
editability to correct mistakes?). ArKaos has no ’scene construction’, i.e. each content item is
an image or video and they can’t really be composited, although simple positioning is supported.
Also, there is no abstraction for higher level events/actions — just the direct mapping of keys
to images and effects — but of course external programs (like a midi sequencer) could be used to
construct more complex events/actions and drive ArKaos accordingly. The new version (2.3) added
time control which was not supported before, which could also be driven from a midi sequencer
for being able to have different modes etc. Like most VJ programs, Arkaos features simple and
straightforward use of media material: images and videos can be easily added to the ’bank’ and
they can be assigned to controls by dragging and dropping them to the keyboard GUI widget.

PixelShox is an interestingly different approach to building a VJ app., as it aims to differ from
the predominant ’ArKaos model’ by offering tools to construct sets in much more open ways, in
order to enable making visuals that go with the music. Concretely it’s an OpenGL engine with
plugins for creating objects, colors, textures (also from video clips and live camera!), modifying
and positiong them etc. Included is an integrated development environment (IDE) for ’wiring’ the
plugins together (e.g. live video input texture generator output to texture input of an environment
map, or mapping the mouse pointer coordinates to a math plugin that sets the parameters of
a Bezier curve based also on audio input analysis). Among the plugins is a JavaScript plugin,
that enables free processing of numerical inputs and outputs. Previously, the author of this study
developed a system using PixelShox, featuring video and object switchers and using the outputs
of the switchers in different compositions (in pixelshox: “effects”), in a tool called (working name)
KyperjokkiWorkPSX. There is also a time code component with real-time (mouse) controls to
it, that was utilized by the video playback routines (both written using the JavaScript plugin).
KyperjokkiWorkPSX has been used by the author of this work regularly for performances since
early 2003. A main lesson learned for this work is the well-proven time code functionality, which
is reimplemented and improved on here for the new tool. A major limitation with PixelShox was
the restricted programmability, which forced the author to construct repetitive node graphs for
certain basic features that would have been simpler to program in a few lines of code.

One interesting system, called Upstage, addresses on-line live performing
(http://www.upstage.org.nz/). It was actually published after the work done for the system
described here, but is also made with quite different goals in mind (has simple 2d graphics and
audio and video chat features). Anyhow, there are relevant intersections with the systems which
will be discussed along with other ideas for future development.

Apart from the aforementioned systems for performing art, as mentioned in the introduction,
presentation applications are relevant to this work in the respect that they also are about showing
visuals to an audience — one major difference being in the use situation, where it is best for the

http://www.upstage.org.nz/

12

presenter to focus on speaking to the audience, and not controlling the visuals (not to mention
improvisingly creating them). However, looking into the authoring of animated presentations gives
interesting insight to the problem area. A system called Slithy is an animation tool for creating
and giving presentations (Zongker & Salesin 2003). It was developed for creating meaningful
animations, instead of the effect-animations that are typically added to essentially static Powerpoint
slides. It is a script-based programming system, utilizing the Python programming language in an
imperative style, providing a straightforward API for creating parameterized diagrams, animation
objects and interactive objects (Zongker & Salesin 2003). The programming interface was selected,
instead of a GUI, to emphasize power over ease of use, to encompass the large variety of animations
that the authors envisioned users wanting to create. A similar decision was made in the work here,
except that the library in this work is more about defining controls to pre-made animations, than
about the actual making of the animations. Besides showing parametrisized diagrams, Slithy also
features zooming and panning large canvases to have nice non-distruptive transitions from one
part of a presentation to another (it uses OpenGL which supports this nicely). Regarding the
style of content, the authors interestingly recognized — to their surprize — that the principles
of classic animation do not necessarily apply to presentations. Instead, they propose principles
such as: make all movement meaningful, reinforce structure with transitions and do one thing at a
time (Zongker & Salesin 2003). Obviously, the style of animation in a show is much nearer to the
classical style familiar from films, music videos etc., than the informational style of presentations,
but it is still worth noting that there may be differences and we should be open to see them.

In conclusion, certain design goals are identified from existing systems: 1. supporting
straightforward use of large amounts of material 2. a powerful time control mechanism for both
scrubbing and direct play 3. a freely programmable interface instead of a GUI to avoid any
restrictions

3.2 Character animation

Character animations are widely used in a range of areas, from medical diagnosis to film and games
industry, and robotics. The data for the actual movements can be derived from motion capture
devices, biomechanics literature, or manually made animation s, and sophisticated systems have
been developed to compose them even automatically based on existing controllers and physics
simulation (Petros Faloutsos 2001). The systems for composing the animations are outside the
scope of this study, but the focus is on controlling them, with live performing in mind. Interestingly,
controlling character animation during simulation has been seen a key feature for also the more
common application of these technologies, i.e. making animations (Boulic, Huang, Magnenat-
Thalmann & Thaimann 1993).

One relevant related area of research are virtual human figures, for which computer system
development has been been done already for more than 30 years (Badler, Palmer & Bindiganavale
1999). There higher level controls for animations have been developed, one technique being the so-
called parametrisized action representation (PAR), which are conceptual representations of actions
including information about preconditions, objects inolved etc. (Badler et al. 1999). The PAR
system has been extended to support automatic modifying of the executed animations too by
variables describing the personality and emotions of the animated character (Badler, Allbeck,
Zhao & Byun 2002). As will be shown along the design, the system presented here shares central
features with the PAR system, regarding how actions are defined and used, but with fundamental
differences too. Regarding the user interface, differing from the mainstream animation tools, the

13

PAR developers have explored natural language processing for altering the behaviour of the articial
agents (Bindiganavale, Schuler, Allbeck, Badler, Joshi & Palmer 2000). For performing that is an
interesting possiblity, as verbal commands can be given quickly and contain lot of information, but
is not addressed in this work.

A three-layer design model for constructing non-verbally communicative avatars is proposed in
(Kujanpää & Manninen n.d.). The model is developed for increasing the expressiveness of avatars
in networked computer games, to enhance communication between players, so the differences with
performing for an audience must be kept in mind when evaluating the applicability of it here.
On the first level, there are the elements of non-verbal communication used, referring to certain
actions such as waving a hand or smiling. Then there is variance, parameters for the movement
(e.g. speed, or sharp/softness). Finally, in so-called personalization the individual characteristics
for a model are constructed, by e.g. selecting the possible variations it has for certain movements.
In the system presented here, there is no achitectural support for variance, as it is limited to the
playback of the pre-made animations. However, that model can still be used as a guideline for
the animators. And, as will be shown, the technique for constructing the performance setups, i.e.
what models and with which animations there are to be used, supports the final personalization
phase as there the set of animations is individually configured for each model. And returning to
the issue of variations, the ability to affect the style of the movements during a performance would
be a very powerful feature, and should definitely be kept in mind in future development.

4 Requirements for the System

A primary motivation for this work was experimenting. The author had good experiences about
using character animation centered content in VJing, in the form of controlling the playback of
video and animation clips (for example video cuts of humouristic kung-fu scenes from Hong Kong
movies for tight lively breakbeat music, and drawn animated smooth capoeira sequences for flowing
techno). Also, the experience from the real-time controllable 3d compositions that PixelShox
had enabled was encouraging. So there was curiosity about using freely real-time controllable 3d
character animations. Furthermore, the start-up company, where the author is involved, had some
real-time controllable character animation centered product ideas. So a main requirement for the
system was to simply enable doing that experimentation.

In this chapter, particular requirements are identified (or constructed, in that view of software
requirements elicitation) in the following ways: First, general ideas, or a design philosophy, about
what kind of things should be targeted, and especially how they differ from common structures
in computer games, are presented. Then, specific requirements for the wanted content type,
3d characters and animations, are identified. Also, a view is taken at the physical operating
environment and the usage situation where the system should be usable. Further, technical
non-fuctional requirements are outlined. Finally, the results of initial brainstorming sessions for
features are presented as a wishlist, and in conclusion certain primary requirements are selected as
acceptance criteria.

Here the requirements are presented as they were seen to begin with, i.e. what the initial
estimations or ’best guesses’ about them were before the actual design and implementation began,
in early August 2003.

14

4.1 Locus of Control

An aspect of the design goals was conceptualized with the help of something called ’the locus of
control’2. This is used to refer to the things that the user of a system is controlling. The attempt
is to clarify the thinking about the separation of conventional computer games and systems for
performing for the audience, which may use similar underlying techniques but for different purpose.
To illustrate this thinking, two examples that the author had in mind in summer 2003 before
starting the work on the implementation, are described in the following. The author is unaware of
existing characterizations of this idea in the literature.

Car follows road. Car driving games are one of the most typical computer games, falling in the
category of simulations (even though many fun ones may be totally unrealistic). There a typical
scenario is one where the car is on the road that continues on, often disappearing out of sight as
it curves to either side or perhaps turns downhill. The controls for the player resemble what there
is for a real driver in a normal car, i.e. he/she can e.g. accelerate or deaccelerate and turn the
car left or right. The goal, and hence the challenge in the gameplay, is to stay on the road, with
extra challenge usually added by constraints such as the time or other elements such as traffic etc.
Now, thinking of a show, it is probably not very interesting for the audience to watch someone
driving a car, — nor are the controls of a car very powerful means of expression, or an instrument,
for the performer. But by shifting the ’locus of control’ something more interesting might perhaps
be made out of this scenario. For example the driving of the car would be automated, but the
performer would control other elements in the scene. For a dance event it might be interesting to
have a preset where the controls, e.g. a joystick, would determine where the road will go next, i.e.
if it turns left or right, or uphill or downhill, so that the performer might adjust it to the music
(along with the colours of the sky etc.). This system would be totally uninteresting as a game, as
there is basically no challenge whatsoever, but as an instrument for performing it would provide
quite a rich scene where many things, such as the automated driving, can be happening but the
user could still have strong overall control of it, being able to manipulate the look and feel of the
whole scene.

Character bounces a ball. Another example of a gamelike scene, where this technique or design
philosophy of changing the controls could be applied, is one where a e.g. a human or human-like
character is bouncing a ball. In a game, the challenge would again typically be similar than when
actually bouncing a ball, i.e. moving the character so that it will keep the ball up in the air,
possibly trying to get extra points by using different parts of the body or different movements for
it. Even the basic challenge of keeping the ball in the air might be quite difficult, demanding exact
timing etc. But what would be interesting to control when using such a scene as an element in a
show? One possibility is the ball: the performer could e.g. move the ball around with the mouse,
and the character would be automatically hitting it in interesting ways when the ball would be
brought to certain distances from it. There again there would be no challenge in keeping the ball
in the air, as the character would be automated and no exact positioning nor timing would be
required by the user. Instead, the performer would be able to concentrate wholly on the show, on
how to get interesting movements and visual compositions out of the situation, and would have
the tempo and rhythm under control. Additionally, there could be controls for selecting the style
of movements that the character is using, perhaps using the metaphor of mood (e.g. relaxed or
aggressive motion), or indeed the shape, colour or texture of the character itself (and why not the
ball too).

2This ’locus of control’ is not the same concept as it is in psychology, after Rotter, but is used here due to the
lack of a better / non-overlapping term.

15

These two example hopefully demonstrate the kinds of functionalities that were sought for in the
development, and clarify how the systems used for performing can be at the same time very similar
to and different from games. The analysis of underlying theories of controlling etc. that could be
used to both formalize and richen these ideas are at this point left for future research. However,
these scenarios were not set as requirements for this system, but the selected focus was on character
animations — dancing to the music — instead.

4.2 Requirements for 3d character animation

Basically the requirement regarding 3d character animations for the system was that it needs to be
able to show them, and that the user can control them flexibly in real-time. This means that the
engine needs to have a skeletal animation system and adequate means for controlling the playback
of them via a programmable interface. This is a standard feature in 3d game engines, and for
the minimal functionality there are no special requirements. It was considered highly desirable,
though, to be able to mix or blend several movements. Also the possibility to freely move the
bones, apart from playback of pre-made animations, was considered interesting.

Concerning the material, the possibility to import material (i.e. 3d shapes and animations) from
popular modelling and animation applications, including the one used by the modeller & animator
in the project (Blender), was naturally required. Additionally, the possibility to use industry-
standard motion capture data, i.e. ready animations of different movements, using the Biovision
hierarhical format (BVH) was seen desirable.

4.3 Requirements set by the operating environment

As the usage situation in live performances differs greatly from common computer usage in homes
and offices, it is necessary to identify the requirements set by it for the system. Basically these
were already approached in the introduction, but here we return to the issue to identify them in a
more specific and complete manner.

For one, the events where the performances typically take place involve temporary arrangements —
sometimes the whole physical set-up, including e.g. electric wires to power up the devices, is built
in a matter of hours. On such occasions, computing resources that may be common in workplaces
or at home, such as local file servers or external network connectivity, can not be taken for granted.
The simplest thing is to rely on nothing but a standalone application running on one computer,
with connectors ready to plug it to the typically analogue audio and video systems. Also, on the
stage there may be limited room, when the control devices should be pretty compact.

However, as a single gig may last even up to 6-8 hours, i.e. the duration of the whole party,
there must also be enough variety in the material and the ways it is used if a goal is to keep it
interesting and different throughout the performance (of course this depends greatly on the nature
of the event, the role of the visualisation there, the style of the performance etc.). Sometimes this
requires different software, that may again require different operating systems and/or hardware.
Also in some cases, where the computer-based visualisation has a major role in the overall show,
several devices are required to have redundancy in case of failures. So sometimes several computers
are needed, in which case they can be used for single visual output usin a separate video mixer
device.

16

Figure 1. A minimal VJ set, where a single laptop handles the visuals. (Photo (c) Heli Hintikka /
http://www.pixheli.com/)

Figure 2. A more complex VJ set, where multiple computers are as video sources to a single video
mixer. The system presented in this work is in actual use in the computer in the middle. (Photo
(c) Heli Hintikka / http://www.pixheli.com/)

17

For the particular target of the development described here, the plan was to have other computers
with other software for other kinds of output (such as video playback), and for this system it
sufficed to deal with the character animations only. Using a black background for the empty parts
in the resulting image makes it trivial to mix it with other video sources.

4.4 Technical requirements

The system is not ’hard-real-time’, meaning that lagging results are not completely worthless,
using the definition from (Dannenberg 1989). Furthermore, accuracy down to milliseconds is not
required, unlike with music. Instead, a ’best effort’ approach suffices, i.e. very low-latency is
desired but occasional lag is not catastrophic.

Stability demands are high, and quick error recovery desirable.

The system should be able to use large banks of material, and feature easy switching from showing
some models & animations to others.

4.5 Features wish-list

To come up with a set of functional requirements, a sort of a wishlist of features to have was drafted
in some intense brainstorming sessions. These were initially drawn on paper and put up on the
studio wall, where the software was later to be implemented. Later, they were partly collected to a
collaborative web space as a Wiki node at http://studio.kyperjokki.fi/engine/KyperMoverWishList
. This list was simply derived from the practical VJing experience of the developers, and used
loosely to map the problem space — not as an actual requirements specification, and is presented
here as a sketch just to give some idea of the range of issues that are relevant to this kind of system
from different perspectives. The terms are not explained here, nor is the understanding of the list
necessary for reading this work.

4.6 Selected primary requirements

As concrete goals for the development, and minimal criteria for the acceptance of the system, the
basic functional requirements were selected as follows: the system must enable having 3d objects
with animations so that a) the objects can be switched, b) the animation to use can be selected
and c) the animation playback can be controlled live. Other functionality, such as the ones listed
in the wishlist out of the early brainstorming sessions, are optional. The rationale for the selection
of these core features was basically identifying what is the absolute minimum to be able to perform
with the system meaninfully: the perfomer must have a wealth of material at hand to fit the
mood during the event (mainly the music), hence the requirement for switching objects (a) and
selecting animations (b) . Also the phase and speed of the animations must be in relation to the
music and dancers somehow interestingly and meaningfully, e.g. move to the beat or be opposite
to it (especially slow visual for a fast period in music can be an effective contrast), and hence the
playback must be controllable (c).

5 The Design and Implementation

The software development method used was inspired by the agile methods movement (Beck 2000),
that has drawn quite some attention during the recent years. Practically it meant that there was

http://studio.kyperjokki.fi/engine/KyperMoverWishList

18

always a functional prototype at the end of the day, and that the whole system was refactored
several times even during the short development period of few weeks that we are looking at here.
New functionality and refactoring (that was often needed for the new functionality) were always
introduced in a new branch, so that there was always a way to go back if the attempt failed.

Therefore, practical requirements to meet the high-level goal were refined and discovered
continuously while designing and implementing the software system.

The schedule set thight requirements on the process. To guarantee having a working system by
the deadline, the first version was targeted to be in shape in two weeks — about in the halfway of
the whole development time. One of the reasons for this was preparing for the worst case scenario,
so that if the first attempt would fail totally there would be still time to start again and reach the
minimum goals. Two kinds of potential risks were seen: 1. failure of the engine-to-be-selected to
meet the demands 2. failure to construct the own system, that uses to engine. So it was estimated
that in two weeks either the system could be moved to use another engine, or made differently
using the same engine that had been used to begin with.

Table 1: Schedule of the development time

Due date Phase of Development

7 / 21 / 2003 pre-alpha experiments

8 / 1 / 2003 selection of the 3d engine

8 / 15 / 2003 functional alpha1 prototype

8 / 27 / 2003 full-featured alpha2

8 / 30 / 2003 reliable beta in actual use

5.1 Selecting the 3d engine

A key part of the whole undertaking was evaluating different 3d engines and finally selecting one of
them (and then sticking to it, when there were difficulties because of it). For future development,
this remains a daunting on-going task. This table represents the picture that the author got of
the selected candidate open source 3d game engines, in autumn 2003. An on-line version of the
table is available at http://studio.kyperjokki.fi/engine/ComparisonTable , with possible updates,
but no guarantees (there are many engines and comparing is hard work).

engine / feature Soya GameBlender Crystal- space

Character
animation

Cal3d integrated,
seemingly nice
controls. Mixing
untested but
probably works as
usual with Cal3d.

The own armature
system, no mixing
of multiple
movements
affecting same
bones.

Cal3d

Content creation Animated
characters can
be imported from
Blender.

Is integrated into
Blender, so setups
work straight.

projects have
their own ways.
later CEL and
crystal2blend

http://studio.kyperjokki.fi/engine/ComparisonTable

19

Python bindings The engine is
written totally
for and partly in
Python, nice API.

GameLogic API,
Python scripts use
logic bricks, can
be cumbersome.

Generated with
SWIG, which
gave a C++:ish
API at that time.

Platform
availability

GPL source, uses
crossplatform
Python libs, is
developed on
Linux.

GPL source,
binaries for mac,
win, linux, irix,
bsd, ..

GPL source, used
on mac, win linux
etc.

5.2 Blender and its game engine

Blender was selected as the engine. It is actually a 3d modelling and animation and rendering
tool, which very exceptionally includes a real-time engine for interactive 3d. Blender can import
data in some and via plugins/scripts several popular formats used in other programs, and there are
tools for importing character animation / movement data from Biovision hierarchical (BVH) files,
that is commonly used for motion capture data. Elemental to Blender is the embedded Python
interpreter and the APIs for programming it, both on the modeling/animating/rendering side and
in interactive 3d / gamelogic. Python is extremely well suitable for both rapid prototyping and
programming product quality object-oriented software, so the support for the language was a major
factor in the decision.

Blender is originally developed by Ton Roosendal and later by others too “for an animation studio
in an animation studio”, but later released as a product for other users too. The tool was distributed
free of cost to anyone interested, and became quite popular. There was a business model of selling
advanced features required for commercial publishing, but the company doing it, Not a Number (or
NaN) closed down during the financial turmoils of early 2000s. However a fundraise was organized
for the users and managed to collect more than the required 100,000e to open source the program.
The Blender Foundation was founded, including animation studios and the Society for Old and
New Media (in Amsterdam, http://waag.org) as Gold sponsors and, interestingly for some, Nokia
as a silver sponsor. The application is now free software (both as in speech and as in beer), as
the source code is licensed under the GNU General Public License (GPL). It is supported on
several platforms (currently at least IRIX, Linux, Mac OS X and Windows, and also a version for
PocketPC). In the open source development, there is an active group of programmers (the author
being a hang-around member at the time of this work) that has already put many, even major,
new features and bugfixes in place. The foundation employs the lead programmer Ton Roosendal,
who is to Blender perhaps something like what Linus was/is to Linux, full-time.

So using Blender for modeling and animation seems to have a solid future, and it was succesfully
used by the project group to make the content needed in this project (the author did not do any
modeling nor animation himself).

The Blender game engine (Ketsji), however, is another story. To put it short, it was seen sufficient
(though not perfect) for the needs of this project. It was also a somewhat safe choice, as the author
had some earlier experience from progamming with it and it’s quite an old an well-known engine
with an active group of very supportive users.

So, finally, a design decision was to use Blender for live performing, and as it happened, it was used

http://waag.org

20

for almost everything in the project: modeling, animating and even texturing for simple objects.
But, as will be shown in the following, this lead to some awkward situations in programming as
there are some (even severe) limitations with the game engine and it’s API. After the project, the
author has actually looked into fixing/developing the API to straighten some of the workarounds
that were needed. It should be noted, however, that programming with the GameBlender API is
very high level, with no need to (or even way to) go into details of graphics rendering etc, mostly
about logic (the module is actually called GameLogic).

5.3 General architecture

Certain general principles for designing real-time applications for live performances are put forth
in (Dannenberg 1989). While the focus there is on music, the system presented here is aligned
with several of those guidelines, namely: non-preemptiveness, event-driven multiprocessing and
the separation of graphics from audio processing.

The overall structure is layered, loosely according to the common layers pattern (Buschmann,
Meunier, Rohnert, Sommerlad & Stal 1996) (p.29). This layering is completely conventional, as
it is the way 3d engines are typically used. Simply, there is the underlying 3d-engine that is
responsible for all low level functionality, such as controlling the graphics hardware via (in this
case) the OpenGL library, managing the object shapes, textures, animations etc. The system
described here, codenamed KyperMover, uses the selected engine GameBlender for all activity.
However, the layering is not strict, as a pure form of the layers-pattern would require. That is,
there are no implementation independent interfaces defined that the modules would use. Instead,
the API provided by the engine is used directly. This is done to avoid premature unnecessary
work. If some such interface definitions are feasible at all, their design and implementation is left
for future work, and the issue is hence revisited in the chapter focusing on that.

Also, on a closer look, the matter is more complex. There is in a way an additional third layer
in-between the underlying engine and the logic that drives the performance. This refers to the
components that are implemented in the Blender project file, to in a way glue together the
engine and the logic parts. Due to the somewhat limited ways of programming that GameBlender
supports, some quite messy hacks had to be made into some of those components, to e.g. initalize
the objects in ways that support their flexible use later etc. On the elegant side, the ’controls’
module implements the mapping of controls to action-driving events which will be described later
in this chapter. As the solutions on this layer are very much engine specific, should be hidden from
the users, and contain close to none generally interesting code, their examination is omitted from
this work.

The logic, consisting of two Python modules, initially called ’kyperjokki’ for the basic library and
’ksetup’ for the configuration file, are in external files. However, also both of them directly access
the GameLogic module via which GameBlender provides its API. So the layers are indeed not
completely isolated, but there are central interdependencies. The focus of the descriptions here are
on this top-level layer.

Table 3: The layered architecture

Layer Implementing modules

Logic kyperjokki, ksetup

21

Table 3: The layered architecture

Layer Implementing modules

Controls (controls, initialisations)

3d-engine GameBlender (ketsji)

From another perspective, the overall architecture can also been seen as a data flow, resembling
the pipes and filters architectural pattern, even though the implementation is nothing like it
(Buschmann et al. 1996) (p. 53). The flow here is that there are multiple original sources for
multiple kinds of data, such as the 3d shapes, textures (i.e. images) used in them, skeletons used
for character animations and the animation data. Also, the users of the system are expected to
author controlling logic to be used in the performances, and pack and configure all these parts into
so-called setups. Blender, true to its name, can be used to do all this. The first implementation
does not support any other ways, i.e. it can only work with a properly prepared Blender project
file.

5.4 The Class Library

The main result of the work is the class library written in Python that implements the system,
together with the necessary configurations in the Blender project file. Besides providing the basic
features the author already wrote, the idea is that the API and the programming model would be
usable for other users, and the original author in the future, to implement new controlling logic to
their visual scenes. The class library is presented as a high level UML diagram in Figure 4., and
relevant parts of it are reviewed thoroughly in this chapter.

5.4.1 High-level Events map Controls to Actions

After initial drafting and discussions, it was decided that a model for what were called ’events’
would be implemented first. The target was a high-level even abstraction to bind controls (input
devices, such as mouses, keyboards, joystics, midi-devices etc.) to low-level actions (what the
engine is told to do), so that the actual events would be independent of the controls used at the
time. A reason for this was the want of an event recorder (similarly to ArKaos, as described in
chapter 2), but so that the log could be well editable (or even written from scratch to start with)
and not be affected by changes in control mappings.

There are existing event-driven systems for both live performances (Dannenberg & Rubine 1995)
and controlling animations (Boulic et al. 1993), as well as for making interactive systems / games in
Python (http://www.pygame.org/) and networking (http://twistedmatrix.com/). For the purpose
of controlling the Blender game engine, however, the existing ones could not be directly used. So
an own implementation was written and tied to how the game engine is run from the Blender side.

Here the notion of an event is somewhat different from the common concept in programming.
Often ’event’ refers to a message, such as MOUSEBUTTONDOWN in SDL, which are processed
by an event handler, e.g. the main loop in a game, which further initiates the appropriate actions
that that event should cause. The event itself may be just the signal, or optionally include some
additional information, such as which mouse button was pressed. In the following, the system
described includes the actions that the event causes in the event object itself. Furthermore, the

http://www.pygame.org/
http://twistedmatrix.com/

22

architecture is made so that nothing else can initiate any actions — it is all driven by what is in
these events. This is contrary to a common design in games, where the main loop e.g. calls the
update-methods of all game characters, evaluates the events triggered by the input devices used as
controls and consequently e.g. changes the states of the game characters, does collision checking
etc. In this system, the main loop only handles the control inputs and activates and deactivates
events in the current scene accordingly, updates the values of controller objects that are used to
adjust certain actions, and updates the scene by executing the actions within active event objects.
A more detailed look into this design and implementation follows, and is later reviewed in the
evaluation section.

Yet a few words about the event-class from a conceptual angle. As described above, the events
here differ from the common ones in that they include the code to drive the actions they are
about, hence they are not simple signals (and they don’t include any information about external
controlling devices, as events in game and GUI programming often do). What are they, then? The
concept the author had in mind when developing the system was that these events are about what
happens in the virtual scene. So any given moment, the events that are active in a scene define
how that scene will change for the following moment. The wording might well be misleading, and
actually at a point it was seriously considered that these events would be renamed as actions. A
reason for not doing this to begin with, and why the change has not been made afterwards either,
is that the term is already heavily used in the system, for in Blender the character animations are
put together as actions, as will be seen later. A better term (hopefully not ’happening’) would be
welcome, if this basic idea proves feasible.3

A motivation for this approach was to facilitate controlling many things at the same time, by
for example changing a more general aspect of the whole scene that affects several characters,
instead of controlling a single particular character like usually in games (as was discussed with the
requirements, via the design philosophy of chancing the ’locus of control’).

These events or actions also resemble the command objects of the command pattern (Gamma
et al. 1993), to the extent that refactoring them to be commands should be seriously considered.
But then extra care must be taken to see whether these constructs, currently and originally built as
virtual events, are and/or should be the kind of commands that pattern describes. For example, the
command classes are often implemented by having a single do method (and may have an additional
undo), but not supporting the long-spanning and potentially multi-phased actions that the event
class here is designed for. Also, the command pattern involves defining supplier components, which
are not used here (although the resources that the event-driven actions manipulate could be seen
as such). Furthermore, as Eckel (Eckel n.d.b) notes in his book Thinking in Patterns in Python,
that the command pattern, as used in e.g. C++ and Java, is sometimes redundant in Python,
where all functions already are also objects. In fact, the reverse can be true too and perhaps
essential for the refactoring of this mechanism: that is, in Python any object can be made callable
(like functions and methods are), simple by defining a special call method (spefically call ,
compare with the act method in the following paragraph). When writing this first implementation
in autumn 2003, the author was actually unaware of this. For an example of the utilization of this
feature, see e.g. the Freevo2 Action & Event system, where events are typical simple messages
which trigger certain actions on selected items, the (menu) items having several possible actions
defined as normal methods, but also being callable so that the special call method executes the
default action (Meyer 2005). This issue is revisited in the later chapter on future development.

3A performance system from STEIM calls sequence of events licks, and some imagination could be used in the
renaming of this construct too. http://www.steim.org/

http://www.steim.org/

23

Here, the design is presented as-is, to base the evaluation and planning of future work.

The events have three special methods: start, act and stop. The start method is called when
some control or another event triggers the event. The default behaviour and some interesting
specializations demonstrating their potential usages are described in the following:

class Event:

def __init__(self, scene, type)

def act(self, mover=None):

def start(self):

self.scene.act_events.append(self)

def stop(self):

self.scene.act_events.remove(self)

Minimally, the start method must add the event itself to the group (list) of active events in the scene
instance it is bound to. The scene class is used to encapsulate everything, and to drive all action.
Optionally, the start method may be extended to do anything. For example, an event that makes
the camera track a target defines the target in its start method, and the event type for running
animations reserves the animation channels (a Blender specific concept) for those animations.

The act method is called every cycle, i.e. in every iteration of the mainloop, as long the event is
active. The default behaviour is to execute all code that is in the list of actions of the event, to
allow the creation of simple events without making custom methods. For more complex events,
the base class is typically subclassed and a special act method defined.

Stop is the counterpart of start, i.e. by default it just removes the event from the group of active
events in the particular scene. An interesting specialization of it was programmed for a camera
moving event, however, as there it does not deactivate immediately but initiates a stopping sequence
during which the movement of the camera slows down gradually. Initially that was implemented
by having the stop method change the state of the event to ’stopping’, and not removing it from
the active events, which causes the scene update mechanism to continue calling its act, which
was extended to treat that mode specially i.e. do the gradual slowing-down and finally, after
a counter has run to the threshold, stop the motion and call the standard stopping methods of
events, deactivating it in the end. This results in softer camera motion, but the generalization of
this technique or some other for softened and other kinds of stylished motions is left for future
research.

class GlobalEvent(Event):

def __init__(self, scene):

Event.__init__(self, scene, "global")

class MoverEvent(Event):

def __init__(self, scene):

Event.__init__(self, scene, "mover")

Furthermore, all events are typed in two mutually exclusive kinds: so-called a) ’global’ and b)
’mover’ events. This decision was made to allow for a) controlling general actions, such as changes

24

in the scene, with the ’global events’ and b) controlling several character animations at the same
time with the ’mover events’. The difference is that ’global events’ are called once per cycle
without any special context, but the ’mover events’ were initially called once per cycle for every
active ’mover’, i.e. controlled animated 3d object. For example, a) activating or deactivating
’movers’ is a global event that is called once per cycle in the scene, and b) moving all active movers
forward is a ’mover event’, i.e. the scene update called that event.act with the particular ’mover’
as a parameter, once for each mover per cycle. This design/implementation was changed, however,
so that currently the ’mover events’ act methods are also called only once per cycle, but they all
internally repeat the same actions for every active mover. Furthermore, special events were made
to control the movers by calling their methods. The further feasibility of this design is yet to be
analyzed, but in the early prototyping it did enable both the exact control of single things and
(rudimentary) control of multiple things simultaneously. As there is principally no limit to the
complexity of how and which actions an event causes, the ’mover events’ could be composed to
result in more delicate movements, e.g. with respect to the spatial relationships of the different
’movers’.

5.4.2 Movers in Scenes

The Scene class was made to encapsulate basically everything needed. It can be seen to consist
of, or to aggregate, the different components that are needed for the whole system to work, along
the lines of the whole-part design pattern (Buschmann et al. 1996) (p. 225). However, in contrast
to the pattern, the Scene does not prevent direct access to these constituent parts. Instead,
some of the parts are designed to provide information to, at least other parts, but also to outside
(e.g. events that manipulate the things in the scenes, and the control code that sets values of
controllers). So some of the parts and some of their properties are considered belonging to the
public interface this Scene provides. This violates the so-called law of Demeter, or the principle:
’don’t talk to strangers’, i.e. that one should never address objects via another object (Lieberherr,
Holland & Riel 1988). In other words, structural knowledge about the referred objects should be
minimized (this is also called structure-shy design). However, utilizing structural knowledge of
the Scene class, and even the classes it encapsulates, in the methods that use it was considered a
convenient technique at least in this rapid prototyping phase. Details about this will be shown in
the descriptions that follow. At least in some cases the data accessed via the structure is like global
variables (e.g. the current timecode), to which access is allowed in the Demeter rules, but which
are not technically global variables in this system (i.e. as shown below, timecode is a property of
the scene-bound instanciation of the TimeCode class).

All potential events are registered in a scene (at their creation i.e. initialisation), partly to
allow communicating about them over the network with remote controllers. This registry is
technically a Python list, called pot events, and conceptually is ’what can happen’ in the scene.
Similarily, there are act events for the currently active events, i.e. for ’what is happening’. These
resemble the two registries in the Parametrized Action Represesentation (PAR) system, namely
the uninstanciated (UPAR) and the instanciated (IPAR) actions, but there are central differences:
UPARs are generic, containing only the default parameters for an action, and IPARs contain
specific information about the agent, objects and other properties involved (Badler et al. 2002).
However, in this system, it is the event class definitions that correspond the UPARs, and the
so-called potential events (in pot events) are already instanciated, effectively tied into the current
scene. Furthermore, the active events (in act events) are not bound to a single agent/actor, like
the IPARs are: as was discussed above, they may involve no actors at all (GlobalEvent) or several

25

at the same time (MoverEvent), even so that the actors/movers involved change during the activity
of the event. These differences reflect the design goals of these two different systems: in the virtual
human research, from and for which the PAR system has been made, the goal is to simulate human
behaviour with autonomous artificial agents, possibly involved in complex tasks that for example
a training simulation may require. Here the goal is to allow a real human to manipulate a scene
with characters, to achive visually compelling compositions.

In the light of the command pattern mentioned as a potential way to see the event class here, this
part of the scene class can be consequently seen as a command processor (Buschmann et al. 1996)
(p. 277). However, there are differences: in that description of a command processor, it would
be responsible for auxiliary features such as logging. Yet in this work, as noted when describing
the Event class, the plan is to implement logging as a part of the events/commands themselves.
Also, a part of this command processor -like activity is implemented outside this Scene class, in
the controllers module included in the Blender project file. The division of labour is that that
controllers module handles user input and manipulates the information in act events, that the
Scene then later uses to actually run the action.

As a note regarding the technical implementation, there is no reason in the current implementation
why these groups of events should be ordered (as lists are). Therefore, they might be refactored e.g.
to be either dictionaries or sets. With dictionaries they could be accessed by name when needed
(e.g. when doing remote controlling over the net, which was ugly in the first experiment where the
meaningless list indices were used to identify the event in the network call). Sets will be a new
built-in type (or class, as they are united) in Python 2.4, which was not available at the time of
the writing of this system (Python 2.0 had to be used because it is the one embedded in Blender
2.25, which was the stable release with the real-time/game engine at the time). Sets provide,
besides basic methods for adding and removing from the group, methods familiar from set theory
in mathematics, such as intersections and unions, checking for supersets and subsets, which might
prove useful for these groups in the future. Following the extreme programming principle or practice
called ’you aren’t gonna need it’ or YAGNI, which states: “Always implement things when you
actually need them, never when you just foresee that you need them.”, neither of these refactorings
have been made yet (it is not even known what the concrete needs will be, and therefore it can’t be
known which solution would be the most sensible) (http://xp.c2.com/YouArentGonnaNeedIt.html)

Also, it should be noted that the ordering in act events may sometimes actually matter, e.g. the
behaviour of certain events depends on some state that other events also effect. A simple example
follows: First, let there be an instance of an event type called EverythingKeptStraight, that keeps
all visual objects in the scene somehow aligned, referred in act events — i.e. such a thing ’is
happening’. Then, there are other events that move some of those same objects somehow. Now,
the result will depend on the ordering of those references to the event instances in the act events
of that scene, because they are executed by iterating that list one at a time, once in every cycle, as
will be shown below. So if the EverythingKeptStraight is after all the other movement events in
that list, all the objects are actually aligned (they may still move, as the aligning is done after the
other movements and may hence differ in time). Or if the other movement events are executed after
EverythingKeptStraight, the objects do not appear aligned, because they were moved within the
same cycle after the aligning adjustment had been made. But this is incidental, and not designed.
So the question rises: what defines the order of the events in the list? Interestingly, it should in
the current implementation be the order in which the events have been activated, e.g. in which
order the keys that activate these behaviours have been pressed. So if the user first activates
EverythingKeptStraight, and watches it for a while, and then activates some movements, that

http://xp.c2.com/YouArentGonnaNeedIt.html

26

might for instance result in strange (and perhaps interesting!) jitter. Then, if the user wishes to
override movements with EverythingKeptStraight, he/she should (first de- and then) reactivate it,
while keeping the other movement events active, so that it ends up being later in the list. A GUI
could of course show this list and provide means for manipulation. So if these data structures for
the groups of events are refactored, means for defining the order of execution should considered.

Similarily, there are lists for the groups of all movers registered in the scene (pot movers) and the
currently active ones (act movers), to which the actions driven by the events should apply.

Also, the scene has references to controller abstractions and some supporting classes that will be
examined later. It also keeps several state variables, such as different modes, a reference to the
active camera etc. These are part of the public interface, and hence ready to be used by the
action-driving events and potentially other code too.

After the work presented here had been done, a Scene class was added to the Python API of Blender
itself by spring 2004 (the modelling/animation/rendering side, not the game engine). That addition
will probably help in streamlining the process of instanciating these real-time Scenes, which will
be looked at later when presenting the setup file and again in the chapter on evaluation. Also,
the news came in in August 2004 that a Scene module is included in the official release of the
game engine too. So in a future refactoring this self-made Scene class should be redesigned and
implemented to interoperate with that somehow. There, following the composition style that is
already practiced here, instead of inheritance, should be considered (Gamma et al. 1993) (p163).
That is, this Scene could be made a MoverScene, or VJScene or whatever that subclasses the base
Scene (if that is even possible, it depends how the newly added module in gameblender is made).
However, it is probably better to have a separate construct, that just uses what the engine provides
(similarly to how Mover objects have an association called ’.bobject’, referring to the blender object
that they wrap).

class Scene:

#all potential events in this scene (setup / preset?)

self.pot_events = []

#events that are currently activated (by some control)

self.act_events = []

#movers in this setup (from blender side to get their GameObjects?)

self.pot_movers=[] #all potential

self.act_movers=[] #all to which actions should apply now

mouse axes go to these now

self.horizontal = Slide()

self.vertical = Slide()

The engine, i.e. GameBlender in this first implementation, calls the update method of the scene
which does some maintaining and centrally calls further the events to act, which results in the
actual actions back on the engine side.

def update(self):

self.time.update(self.controllerobject.timer)

27

for event in self.act_events:

event.act()

Currently the only utility method in the scene class is the one used to add new movers to a scene,
which uses the addobject actuator of the Blender game engine, which further has been customized
to register the newly added objects as needed.

def addMover(self, number):

self.addobject.setObject(self.movernames[number-1])

The title class of the whole project, Mover, represents basically any object that is to be shown and
controlled, i.e. moved and animated. Each mover instance is bound to a scene, may be activated
and deactivated there and typically has a set of animations. There are methods to turn them in
different directions, and to move (currently backwards and forwards), and to run the animations.
As described with the events, there are now also special mover events that call these methods with
different parameters, and the methods are responsible for iterating all actions for all active mover
instances to allow for simultaneous control of several kinds of characters.

class Mover:

def clone(self, direction):

def declone(self, direction):

#selections and removals

def select(self):

def deselect(self):

def remove(self):

#actual actions/methods/functions .. things that can do!

def turn(self, direction):

self.turnings = {"left": "self.turn_y = self.turn_y + self.step",

"right":"self.turn_y = self.turn_y - self.step",

"up": "self.turn_x = self.turn_x + self.step",

"down": "self.turn_x = self.turn_x - self.step",

}

def move(self, direction):

def animate(self, motionnumber, todo):

There is a known liability in the command pattern, that the event framework here resembles,
namely “potential for an excessive number of (..) classes” (Buschmann et al. 1996) (p. 289).
Of the suggested techniques for solving the problem there, equivalents of grouping, unifying
and having pre-programmed macro-command objects are already a part of the event framework
here. Additionally, to facilitate adding several simple events that manipulate the movers in
straightforward ways, like turning them around or moving backwards and forwards, some general
mover events were made. MoveMover and TurnMover take directions (like “forward” or “left”)
as parameters, and can hence be instanciated for the different needs without extra classes.
CommandMover is used to instanciate events that call given methods of movers. Examples of
their use are shown later in the setup file.

28

class CommandMover(MoverEvent):

class MoveMover(MoverEvent):

class TurnMover(MoveMover):

5.4.3 The Animation System — working around GameBlender peculiarities

Combining the references to the actual animations on the Blender side, instanciated as
CharacterAnimation objects within movers, and the special mover event for controlling animations
(AnimateMover), this animation system is probably the most complex construct in the project.
Changes to it had to be made quite briefly before taking into use, and rationalising / refactoring
might well be in place.

One factor causing additional need for complexity was the need/want to re-use the so-called
action actuators, that must be used to run the animations in GameBlender, for multiple different
animations. As this is probably the most advanced (although still not anything fancy) hack around
the limitations of GameBlender, and perhaps also a teaching lesson or at least an explaining factor
of the implementation, it is probably worthwile to discuss the solution here in a bit more detail.

The idea is that for each (3d/visual) object, there may be any number - preferably a large number,
to allow for flexibility, improvisation and richness of expression when performing — of animations
i.e. actions in Blender terminology, which manipulate the object. In the Blender game engine,
there is a system of sensors, controllers and actuators — called Logic Bricks (?) — that can
be used to make interactive applications even eithout programming, Python controllers being a
special case. There, an action actuator are often bound to a certain action, so that calling a
particular actuator activates that action. The programming API, however, does provide means for
changing the target action of an action actuator. Also, there is a method for directly controlling
the animation via programming, but unfortunately it does not work (is either not implemented or
broken). An alternative way is to set the action actuator to be so-called property driven, meaning
that the actuator sets the animation frame based on the value of the given attribute of the object in
Blender, which can be set via the Python API. However, the engine is made so that every actuator
can be used only once at a time, per cycle. Therefore, having multiple concurrent animations for
an object, of an basically unlimited set of possible animations, is not trivial.

The solution here is that for every mover-to-become, i.e. for every object in Blender to be controlled
via this system, there must be as many action actuators as concurrent animations/actions are
needed. For the initialisation to work, the number of those — called animation channels hereafter
— has to be stored in a property of that object (though it might be possible to get their number
by analysing the list of all actuators for that object, that is something to study). When a mover
is ’invoked’, i.e. added by an addObject actuator to the visible layer, that preparation method
gets the references to the given number of animation actuators. Then, when an animation is
activated (by the AnimateMover event for all active movers), the CharacterAnimation classes
’begin’ methods (analogous to Event.start, but named differently as an animation is not an event)
which are instanciated in the movers in a particular order, reserve the first available animation
channel and start running it via that actuator (after it has been told the wanted action name).
When an animation is stopped, its channel is freed.

class AnimateMover(MoverEvent):

def start(self):

def act(self):

29

def stop(self):

class CharacterAnimation:

self.position = self.length * self.mover.scene.time.code

clonephasing = self.mover.scene.vertical.value

cloneposition = self.position + (clonephasing * clonedistance)

5.4.4 Clones

A special feature of the mover system, and the mover events discussed above, including the
animation playback component, are the clones. They are about having multiple copies of the
same character visible in the same scene at the same time. During the implementation of this first
prototype, the author hesitated whether to have them all as separate mover instances, or somehow
included in a single one. After experimenting a little with having separate ones, the solution where
they are included in a single mover instance was pursued. This meant that all events that deal with
movers must handle the clones as well, which can certainly be awkard, but opens up interesting
possiblities too, as demonstrated by the character animation system which was presented in the
previous part, and is now further examined here regarding the clones.

So clones are copies of the same model, with the same animations etc. In this first prototype, they
are structured so that there or so-called horizontal and vertical clones, which appear to the side
or above/beneath the original object accordingly. Furthermore it is made so that when adding
them, they appear one by one on opposite sides, that is: when adding the first horizontal clone,
it appears on the right side of the original object, then the next one appears on the left, the next
again on the right etc.

When a character animation is active for a mover, the position (frame) of the animation is set
according to the time code in the system (more about the time system below). Normally, this
means that animation is at the beginning when the relative timecode is 0, and it is linearly played
back so that the animation reaches end (last frame) when the time is near 1. However, for the
animation playback of clones — i.e. additional copies of a model in the scene (mover), the behaviour
was modified. An extra variable, called clonephasing, was introduced, an initially controlled with
the ’vertical’ slide (mouse y coordinate in the first setup). This variable is used so that the current
position in the animation (frame number) is increased by the (tulo) of the clonephasing variable,
and the so-called clone distance, which is simply the order number of the clone. So the effect is
that when clonephasing is set to 0 by the user (i.e. the mouse y coordinate is 0), all clones animate
in exactly the same phase as the master mover. Then, when the variable is risen to e.g. 0.1 by
sliding the mouse upwards, the clones that are next to the original one are a little ahead, and the
possible additional ones are more so etc. This is illustrated in the figure.

This mechanism would obviously need tuning from a mathematical standpoint, but already proved
interesting to play with and useful in performance. And from a theoretical standpoint, it gave rise
to an interesting high-level variable that may be useful in VJ tools: the clonephasing, discussed
above, is in a way the amount of difference there is in the scene. This simple but powerful
notion was derived from the studies in improvizational systems, and theoretical work about dance
improvisation and cognitive sciences, including gestalt theory (Solano 2004). So the otherwise
perhaps unelegant solution to handle clones as special cases by the so-called mover events, i.e.
the components that drive all actions involving the animated characters, including the character

30

Figure 3. The same composition with three different values of global difference, resulting in the
animations of the clones being in same phase when the difference in minimal (topmost image), with
slightly increasing difference when the variable has a small value (middle image), and in radically
different when set at maximum (bottom image).

31

animation component, lead to this implementation where the phases of the same animation in
different clones can be modified, and to the the overall notion that difference could be an interesting
high-level user-controllable variable, which different functions in a performance system could hook
to various effects. This notion of difference can perhaps be seen as the counterpart of the central
concept of similarity in gestalt theory, where other factors include proximity, closure and simplicity
(Wertheimer 1923). The potential in applying the theory is addressed in the evaluation of the
results in this work.

5.4.5 Direct manipulation of bones

Besides the playback of pre-made animations, which control the bones in the skeleton according to
the data derived from either artist-made or motion captured animation, the direct manipulation of
bones in real-time was experimented. A bit surprisingly, the otherwise limited Blender game engine
provided a straightforward means for that, via the setChannel method of the action actuator, which
receives a 4x4 matrix defining the new parameters for an individual bone. In this first test, a new
mode called JuggleMode was added as an event, in implemented to that when active it sets the
position of a certain bone freely based on the current mouse position. In the default setup, that
mode is active when the space bar is pressed, and the bone to move is defined by giving its name
when configuring objects for the system. This simple mechanism is not really useful, but proved
that the system works, leaving better ways to use it open for consideration.

5.4.6 Controllers

Apart from the event-system, scene, movers and animation runners, some initial work was made
for what could be classified as controllers in the sense that they output values on which e.g. the
animations may depend (perhaps the term ’modifiers’ could describe these too).

For one, there is a simple abstraction for controllers, of which the only implementation so far is an
as simple model for slides, which only have a value from 0-1. In the prototype, there are two such
slides capturing the values from mouse coordinates, called simply horizontal and vertical.

class Controller:

class Slide(Controller):

In future development, the way controllers are bound to scenes should be revamped. One way would
be to make a dictionary Scene.controllers, where the different controllers would be accessible by
names, and could then be better configured by the user in the setups. A good opportunity for this
refactoring is when adding support for MIDI-controllers.

5.4.7 Time

As moving to the music was a central goal in the development, targetting the use in dance events,
the RhytmMaster was made. The first implementation assumes an even beat, which was known to
mostly be the case in the first event. There are methods for inputting beats and ’tahti’s, based on
which the tempo (beats per minute, bpm) is counted and can be given. The animations are bound
to this information by default.

When considering more complicated differently structured, and arbitrary, rhythms, a question rises
whether to extend this system or just rely on external output from e.g. a MIDI sequencer. The

32

deciding factors are not very clear yet, but there probably are potentially interesting things that
can be better done with this internal RhythmMaster. For example, changes in rhythm could
be triggered by certain conditions in the scene (although things like that could of course be
communicated back to an external sequencer too). Also, it should be noted that Blender already
includes powerful time-curve features in the interpolation (IPO) module, that might be usable for
shaping rhythms. At this point, however, all that is left for future work.

A special TimeCode class was made for driving the animations (and could be used for e.g. video, if
not music, too). This time code is designed for looping items, and has the value from 0-1 (beginning
to end). A TimeCode instance is always a part of a Scene, as scene.time , so the current timecode
is accessible as scene.time.code to anything that has a reference to the scene, and used this way by
the animation components.

In the normal play-mode it adjusts the phase according to the durations given by the RhytmMaster,
but there is also a ’scrub’ (as it’s commonly called in video, similar to ’scratch’) mode where
the timecode i.e. the phase of animation playback is mapped from a controller, currently the
horizontal slide i.e. the mouse x-axis. This is similar to what the author had implemented earlier
with PixelShox (in JavaScript), as mentioned in section 2 / related work. The current TimeCode
class is suitable for playing back and controlling short looping contents, such as single character
animations and video clips, but in order to support long spanning narratives in the future some
other kind of time constructs will probably be needed. Also, if more complicated rhythms are
to be supported by the RhythmMaster component, this TimeCode class must be re-designed and
-implemented as well.

class TimeCode:

def update(self, timer):

if self.mode == "play":

self.step = self.totalcyclelength / self.scene.rhythm.getLength()

self.code = self.code + self.step

if self.code > 1:

self.code = self.code - 1

elif self.mode == "scrub":

self.code = self.scene.horizontal.value

This way, the basic goal of being able to ’dance to the music’ with the characters, was reached.

An overall view to this resulting class library is shown as a UML class diagram in Figure x.

5.4.8 Camera control

Controlling the camera is a basic requirement for almost any 3d system, and a rudimentary solution
was made for it here also. First, support for zooming was added, so that the user can modify the
virtual lense of the camera during the performance. In the Blender game engine this is done
by modifying the camera lense via a suitable IPO. Additionally, a feature was added to have
camera tracking, i.e. the camera turn towards the target (e.g. if it has moved). Also, late in
the development there was an attempt to add more camera controls, i.e. to have commands for
positioning the camera relatively from the target, e.g. to have it in the front or behind the selected
mover. However, all this was severely limited by the engine: it was found that due to the way the

33

Figure 4. The original design and implementation as a UML class diagram

34

Blender game engine actuators worked, there was no sensible way of giving a selected object as
a target parameter for the camera actions, e.g. tracking. So the camera controls where left very
poor in the first implementation, which limited the use mostly for situations where the camera
was stationary, and the movers positioned near the initial focus area. Later the author reported
this to the new developers of the engine, and in 2004 the Blender game engine was changed to
overcome that limitation. So now with little work these originally unfinished controls could be
made functional, enchanching the usability of the tool greatly.

5.4.9 Missing elements

Several essential areas of functionality are missing in this first implementation. These include
the utilization of the so-called non-deforming animation and other uses of the so-called IPOs in
Blender, light control, special effects like fog, and collision detection and other physics simulation.

The term non-deforming animations refer to the type of animation where the shape of the objects
remain unaltered (unlike in character animation), but the objects move in the scene. There are
two typical ways of doing it that Blender supports: keyframe animation / IPOs and paths. With
keyframes the positions of the object in certain timeframes are defined, so that one position is
interpolated to the other when playing back the animation. Paths are invisible curve objects in the
scene, which movements of the visible objects can be made to follow (e.g. so that an object goes
from one end of a curve to the other in 100 frames, along the curve). So with these techniques pre-
made movements can be defined, but the use of those was not addressed in the implementation,
and is left here for future research. As an additional note, after the first use of this prototype
the author became interested in group movements, formations. Interestingly the non-realtime
animation side of Blender provides a quite peculiar tool for that, called dupliverts. Using them,
objects are made to appear in the vertices (points) of another object. For example, using a hexagon
object for dupliverts, some other object like a model of a human can be put to appear in each six
points of the hexagon. Then when the hexagon is moved, rotated, deformed etc. the other objects
move accordingly. This provides simple means for an animator to deal with group formations. The
author has not investigated whether the mechanism works on the game engine side, but surely a
similar one can be implemented with many engines.

In this system, there is no support for controlling lights during performance. Here of course the
virtual lights in the computer-generated 3d scene are referred, not the actual lights in the place of
performance, which are outside the scope of this system. In the first implementation, the use is
limited to having the lights in the predefined positions (set in the Blender GUI). There is nothing
extra difficult in it technically, i.e. lights are just objects that can be moved around normally,
but there was no time to make controls for them. Surely, there are many interesting things to
do, starting from basic effects, and not forgetting some classic techniques like having a spot-light
follow a central figure in the scene etc. Also mere chances in the colour of light can be a powerful
effect.

Configuring effects like fog or mist, or setting an background image for the scene, are handled via
the world object in Blender. That has not been utilized in this system, again not due design nor
technical reasons, but only lack of time.

Another lacking area is the utilization of physics, like having collision detection and simulated
gravity. Combined with character animation, they can be really impressive tools, as demonstrated
by the popularity of so-called ragdoll systems.

35

5.5 A setup file

Besides the actual content (models, animations, lights etc.) on the Blender side (made as
mover.blend) and the class library providing the basic functionality (written as kyperjokki.py,
will be refactored differently to a module), the third main component in this project was the setup
file (ksetup.py in the 1st prototype). Unlike the class library which is meant for programmers only,
the setup file is intended to be something that non-programming users could edit. Despite that, it
is a genuine Python file and may include arbitary complexity. A practice in the development was
to do experiments and special cases in the setup file, to be integrated in the library later.

There are several mandatory parts that a setup file for this system must include.

scene.movernames = ("Guy", "Snake", "Kenguru", ...)

Firstly, the setup must declare (as an attribute called ’movernames’ for the scene) the names of the
objects in Blender that are to be used as movers in this setup. The order in which the names of the
movers are given is significant, as it determines their numbers which are used to active/deactive
and select/deselect them.

To be animated, these objects must be so-called armatures, which is the Blender term for skeletons,
and which have the actions with the animation data. However, a plain mesh (a 3d shape, with no
armature) may be used as a mover too — it will just have no animations bound to it. Besides the
armature system used here and in general for character animations, in Blender there is also the so-
called IPO system (interpolation) for both non-deforming object animations and mesh-deforming
vertex animations, plus it can be also used to affect many other things in scenes. In this first
prototype, IPOs were used only to control the zoom of of the camera lense as a special case. As a
future development, an elegant way to support IPOs in this system might be to enable defining a
’mover’ with IPO animations similarily as the armature ones currently , just using the IPO block
names and lengths instead of the action information. Fascinating challenges lie also in incorporating
support for animated textures (by enabling the manipulation of UV-coordinates, which is well
supported by the engine), which intriguinqly would bring us closer to having videotextures.

guy = kyperjokki.Mover("Guy", [("ABC", 12),

("Guitar", 44),

...

],

"chest",

scene)

Then, the movers must be instanciated. Here the order does not matter. The first argument is,
again, the name of the object (mesh or armature) in Blender. As the second argument, a list of
animation name and length (in frames) pairs is given. This determines the order of the animations,
used for control bindings — the first animation/action name given will be the first animation for
that object, activated for every active mover when the animation event is activated with the first
animation as an attribute. The third argument is a single string, defining the name of the bone to
be used when using the mode where an individual bone (on the armature) is used to manipulate
the shape of the object. The final argument is the scene in which the mover is to be created.

Additionally, the set-up file may include any kind of event definitions etc., but that is optional,
if only functionality implemented in the library is used. Currently, however, there are yet many
crucial functions implemented in the set-up file that have not been moved yet.

36

The final mandatory element in the set up file are the keybindings. It is implemented as a Python
dictionary (which again is a hashtable), which basically maps so-called keys to values. Here the
keycodes (as evaluated by Blender) are used as the dictionary keys, the value consisting of the
associated event instance and a constant declaring the keybinding type. Currently three types of
bindings are implemented: WHENPRESSED, which causes the event be active as long as the key
is pressed down but not released, TOGGLE which toggles the event/action on and off at every
press, and ONCLICK which triggers the event only once when the key is pressed (and again when
pressed again, of course). This design was pretty ad-hoc and grew with the implementation, but
has served quite well.

One peculiarity about this mapping of controls and action-controlling events is the instanciation
of events. As shown in the example extract below, it may be done either elsewhere in the set up
file, or within the dictionary only.

keybindings = {#keyID, event, controlbinding type,

ZKEY: (zoomOut, WHENPRESSED),

AKEY: (zoomIn, WHENPRESSED),

LEFTARROWKEY: (kyperjokki.TurnMover(scene, "left"), WHENPRESSED),

RIGHTARROWKEY: (kyperjokki.TurnMover(scene, "right"), WHENPRESSED),

TWOKEY: (SelectMover(scene, 2), ONCLICK),

QKEY: (kyperjokki.AnimateMover(scene, 1), WHENPRESSED),

BKEY: (countBeat, ONCLICK),

PAD2: (setCameraFront, WHENPRESSED),

}

To summarize, the setup file provides powerful ways to both include material, that is characters
and animations for them, for a set, and an easily modifyable keybinding configuration. Also the
users are free to implement any kind of new events here and add controls to them, given that
they have the necessary programming skills with Blender Python. This system does not match
the ease of use of other VJ tools with GUIs, but should still be usable for non-programmers too as
they can modify the text file easily. Also adding a GUI for the configuration should be completely
straightforward.

6 Evaluation

Here the constructed system is analyzed in itself, compared with other systems, as commented by
peers and with observations from actual use of the prototype for the intended and other purposes.

6.1 Model / system (in itself & compared to others)

A basic evaluation criteria for a design science artifact / software construct is whether it works
or not. As usual in software development, this is to be evaluated against the requirements, or
acceptance criteria, set for it. Recalling the basic requirements selected in the end of chapter 4,
and the system described in chapter 5, it can be seen that the implementation meets the basic
goals. How well it does it, compared to a) other design possibilities within the selected set of
technologies and b) other similar systems made with other technologies, is further evaluated here.

37

The evaluation here is, however, very limited. No formal analysis of the system itself nor controlled
studies of the usage have been made. The analysis of the system is limited to the authors own
observations, with only little observations from competent peers. Also the experiences from use
are so far limited to the author’s own, with only some preliminary observations by others.

Also, the more advanced evaluation criteria are unclear. True to the nature of prototyping and
iterative development, a motivation for building the system was indeed to better identify interesting
questions about how such systems can and should be made. Yet the unclarity is not even limited to
the design and implementation choices of the system, but also the different potential purposes and
ways of usage are open to discussion — the author holds the view that, perhaps a bit strangely, by
making a system and using it, it can be learned what kind of systems and for what purposes would
actually be interesting to have. So besides evaluating the system against the original criteria that
were known when the development started, in this chapter attempts are made to also bring out the
lessons learned while making the system about what requirements should be set for the different
further developments and/or other systems addressing similar goals.

6.1.1 Comparison of the event system with others

As mentioned in the chapter overviewing related work, there are several kinds of existing event
systems, for both similar and different purposes than the one presented in this work. Here, this
newly introduced one is evaluated in comparison with closely related or otherwise relevant others.

Let us begin with a brief recall of the model introduced here. These so-called events were designed
to map controls to actions, and implemented so that they may include much of the logic of the
actions themselves (otherwise the logic is in e.g. the methods of the mover class, used to control
the animated visual objects). Conceptually, they refer to basically anything that ’happens’ within
the system, meaning ’the virtual world’ or scene, technically what is executed in the 3d real-time /
game engine. So for examble, the ’happening’ that the camera zoom changes, or that all clones of
selected ’movers’ arrange themselves in a circle around their originators, are events in this system.
Unfortunately, this may cause confusion, as there are conflicting existing definitions and ways of
use, as will be examined in the following.

Often so-called events are used to refer to controller inputs that the computer-based system receives
from the outside, e.g. keypresses and mouse pointer movement. An example of this in the
event system of Pygame, which is based on the cross-platform Simple Directmedia Library (SDL)
(http://www.pygame.org/docs/ref/pygame event.html). This way, all action may be controlled
by any other means, and the event system is limited to handling control device input only. As
mentioned when describing the design and implementation, a decision was almost made to rename
the event class presented in this work to ’action’, but as this implementation is so tightly bound
with Blender where that word is already reserved for something specific and well suitable, (i.e.
mesh deformation driven by the movements of an armature), the change was withheld.

Returning to examining the Pygame/SDL event system, there is the possibility of defining so-
called user events, besides the default control device events. Each event type is identified with a
numeric code, actually defined in the underlying library (SDL) that manages the operating system
dependent interaction with the hardware, so that the user events must be assigned their own
type with another number. Additionally, the newly created event types can be assigned members
or attributes. So basically it may be possible to define Pygame user events that are similar to
the events in this work, i.e. which would include the consequent actions in themselves. These

http://www.pygame.org/docs/ref/pygame_event.html

38

special kind of user events could be perhaps called (and subclassed?) as ’action events’ to facilitate
their special treatment. This may be tried out if a new version of the system presented here is
implemented using e.g. the Soya3d engine, which also uses the SDL event loop (and can use the
Pygame event loop too), and/or if Pygame itself is used to perform with 2d graphics and video.
Furthermore, regarding this relationship of the Event class here with the other event systems, and
the possibility of conceiving the one here as ActionEvent, in the Virtual Object System (VOS) by
interreality.org there actually is a class called ActionEvent used with the so-called Actors, that have
been made for animation control purposes. The author has actually discussed the development of
the animation systems for VOS, as they have not yet been implemented, so further evaluation of
these event systems is all-in-all an interesting area for future work.

6.1.2 Cognitive, user centered and authoring issues

Apart from the technicalities of the event system, the key question when thinking its design is
what it means for the users.

The authoring of more advanced and complex, or just larger, functionality was not addressed in the
original requirements nor even in the wishlist, which does however mention ’set construction’ as an
area where functionality is needed. Examples of such authoring include making of more complex
’acts’ involving several movers/characters that move and animate somehow relative to each other
or other things, or making some sort of composite actions or sequences which e.g. activate certain
smaller actions or events in certain order / at certain intervals. During the development of this basic
system, the author got more interested in models for such compositions, and was even sketching
UMLs of high-level classes all the way up to Manuscript, familiar from the scriptwriting technique
used in theatre plays and films. But currently, there is no such support for an author in this system
— just the barebones and hopefully flexible event system, that hopefully can be used to create
interesting setups (or scenes or acts), or else must be redesigned accordingly. (A way how e.g. the
concept of a manuscript, implemented as a class definitition, that further composes of a sequence
of scenes, - (vrt. banks in videobank)

Another challenging way to look at the issue of authoring, both for the design of the system
and the user, is the concept of Choreography in dance. That might lead to, besides the long-
spanning highlevel abstractions that would probably appear in Manuscript after related concepts
in screen- and playwriting, also to detailed descriptions of body movements, that are missing from
the current system as well. Examples of this kind of detailed authoring would be defining deviations
in the exact positions of a body part in a movement. Currently, the authoring of the character
animations is mostly outside the scope of this system, as it is made for controlling the playback
of the pre-made animations. However, real-time control of individual bones of the armatures,
i.e. the skeletal models used for the character animations, has already been experimented and
is preliminary supported in the current implementation (the so-called juggle mode, enabled when
holding done the space key, maps the mouse movement to an individual bone in the active movers).
Continuing in the spirit of experimenting with changes in the ’locus of control’, an author might
want to define events that affect the style in which the movements are made. So, for example, there
might be ready made basic movements for moving limbs and other body parts (so-called poses in
Blender), and composite actions (as they are called in Blender) such as walking, kneeling down,
jumping etc., ready-made as currently. But additionally, there would be e.g. event types called
SmoothMovements or NervousMovements, that would change an aspect of all movements that occur
while being active, making them smoother or appear nervous in these cases. However, making such

39

events is extremely complex as it probably requires calculating delicate 4x4 matrix transforms for
the individual bones that would modify the original movements to match the desired style. Perhaps
some basic methods, hiding the required mathematics, for doing this kinds of things could be added
to the library to facilitate authoring of such real-time modifications of movements. Or, avoiding
the complexities in real-time modification, support using a pre-made variety of different versions
of the same movements.

So in this view, the class library of this system is to provide the basic building blocks that should
be useful for further creating the building blocks for making such more advanced constructs as the
ones discussed above. In a way, the events define a vocabulary and syntax that the authors can use.
In fact, the design pattern called interpreter has been described as a way to create a (scripting)
language for the user (Eckel n.d.a). If the current design fails to do that well — as it may, even
though it did fulfill the basic requirements for the first prototype — it should be redesigned (and
the program and library refactored) to better suite those future purposes. So the questions follow:
how? And where to look for answers?

Interestingly, a key is the problematic notion of event itself. Concerning narratives, they can be
defined as sequences of events, involving causality. On the surface, this seems to solve the problem:
as all actions in this system are defined by events, and narratives are sequences of events, just make
sequences of these events in order to make narratives. This, however, remains mostly untested with
this system and is surely a much more problematic area when going to the details, which is left for
future work.

On the other hand, instead of narration, dance and choreography open a different perspective to
the potential ways of authoring with this kind of systems. There the means of composition and
the relationship to the notion of event is also left for future research.

So what is left to say about this event system? Let us take the evaluation to something more
concrete by inroducing a couple of examples of authoring with it. These were not thought of by
the author when developing the system, but came up in discussions with a collegue afterwards,
and therefore are more potential in pointing out weaknesses in the design:

A choreography for two, with collision detection with external actors: In this example, there are (at
least) three actors, of which two participate in a certainly shaped motion (and are implemented as
Movers).

A way to author/implement this motion, or ’choreography’, with the current system would be to
create a new event, e.g. ChoreographyForTwo, by perhaps subclassing MoverEvent (even though
this would not be exactly like the current MoverEvents as we will see). ChoreographyForTwo would
then e.g. take as arguments the Mover-instances that are supposed to participate in the motion,
let’s call them moverA and moverB. This would be done in the start method, e.g. so that the two
first selected movers would be assigned, and the initiation canceled if no two movers were selected.
The start-method of the event would then e.g. check the positions that the participants have in the
beginning, if the upcoming motion driven by this event, i.e. defined in this choreography, would be
relative to the initial positions. Then, as long as the event is active, its act-method would be called
from the mainloop and it would move the two movers accordingly, either by using the existing
move- and turn-methods, or by adding new methods for setting arbitary positions (which should
be straightforward as Blender’s setPosition should work in the game engine too).

So far, this example demonstrates the intended use of the library nicely: existing framework could
be used to add this new kind of functionality. Even better, the architecture seems to suite it well,

40

as the mover-instances do not need to be any special kinds not know anything about this new
feature, and the movement caused by the choreography-event would be coherently driven by a
single function, that could easily be paramatrisized e.g. so that the paths of the movements and
the speeds could be controlled by the performer with e.g. sliders. But, to be honest, this far this
example was presented by the author in the discussion, and only the remaining part brought up
by the collegue shows some problems. As a sidenote, also support for the existing functionality
for making such animations in Blender, such as object IPO curves and using regular 3d curves as
animation paths, should be seriously considered for authoring this system.

The question posed by the collegue was, what to do when a third object (MoverC) is introduced that
moves accross the scene, which is again pretty straightforward by making e.g. an event that does
just that, say SceneCrossing(MoverC) (or TakeAcrossScene(MoverC) if they are thought more of as
actions). But what if that third object can collide with the two participating in the choreography,
resulting in e.g. the stopping of the participant and the new third object? This is not a trivial
problem for several reasons. For one, the system does not utilize collision detection at all yet. This
is not difficult per se, though, as the Blender game engine (and other potential ones that could be
used) include collision detection, and even if they would not, it would be relatively easy to do for a
simple case like this (just checking if some of the movers overlap). But the difficult question is how
to handle the detected collisions, and how to affect the active events that are manipulating the
movers that collide (and how to even know which events are actually manipulating which movers
and how).

Continuing in the mind-set of making new kinds of events for everything that is needed, a
CollisionDetection event (or again, DetectCollisions if thinking as actions) is conceivable (in the
case of Blender, it should be made to receive signals from the collision sensors in the engine). What
could it do about the detected collisions, then? Still in the event world, it might somehow be made
to signal the other events about the collisions, so that they would act accordingly (in this case
ChoreographyForTwo and SceneCrossing should stop moving the movers that collided). But at
least to the authors mind, this seems awfully clumsy and overly complex, and might in practice
prove almost impossible. Another, perhaps more sensible solution would be to add some state to
movers or use the existing state (such as if they are active or not), make collisions change that
state (e.g. deactivate the movers that collided, perhaps via a collision method), and the movement
methods respect that state so that inactive movers would not move even if there were active events
moving them. This of course depends on the overall requirements for collision detection with regard
to the different events (and the games / physics simulation like realistic handling of collisions, that
the underlying engines can usually already do, is of course quite another story - this is about trying
to do something different with that information).

So by having collisions detected and handled by changing the states of the movers, this case where
the colliding would result in halts could be implemented quite reasonably. But what if there is
an additional change in the wanted behaviour (or should we say: a new event in the narrative,
caused by the previous ones?), and the collision would now stop MoverC as before, but make the
participating mover in the ChoreographyForTwo, let’s say MoverA, change it’s behaviour so it
continues to move but restricts its movement to the area where it has not collided. As the motion
of MoverA is still driven by ChoreographyForTwo, so the approach that was abandoned in the
previous paragraph, where the collisions would be signalled to the relevant active events, would
now be the straightforward way to achieve this functionality within this framework. Another way
might be to further develop the internal states that the movers have, and the ways they are taken
account by the methods used to move them, i.e. to enable having restrictions in the areas where

41

they move and somehow adjust the motions accordingly. But that would easily lead to awkward
situations, e.g. when the Choreography event thinks it is still moving the previously collided mover
somewhere, when it is actually elsewhere and moving differently. Yet another approach, and one
that should be given serious thought, is to think the whole design of the system over. Obviously
this example event/choreography/narrative is not necessarily a representative one, but it may well
exhibit some of the interesting challenged that lie in the authoring of computer based animation.
Certainly one thing to do for future development would be the search the literature and construct
meaningful test cases.

In conclusion, the author is leaning towards the decision that this complex notion of an event should
be discarded. Instead, the better known and more straightforward notion of command, deriving
from the pattern with the same name (Gamma et al. 1993), should be used. A strong argument for
this is that the term event is commonly used for a different, but confusingly similar purpose, widely.
A command is straightforward: after all, these are what the user tells the system to do. Also a
very strong argument for this change arises from a simple analysis of the so-called events that the
author made for the first experiment: many of them are named like commands, not like events!
Considering names like TurnMover, AnimateMover, countBeat etc. this seems clear. Somewhat
surprisingly, the semantics of the Command pattern and the event system here are not so different
in the end, even though they were initially observed as coming from different angles. Surely, these
events-changed-to-commands would not be quite ordinary: as noted when descriving the design,
they have special starting and stopping procedures and may have very long-spanning durations
(even being always active), and include complex structures like a state-machine in their execution.
Yet, already because of the confusing naming overlap with the Event class, some derivationg of
Command would be at least less bad.

Related to this, the separation of the current event-management to a different component, perhaps
according to the CommandProcessor pattern (Buschmann et al. 1996) (p. 277), should be
considered. This should be done especially if it facilitates developing new features to the scene
class to support more interesting movements and/or having a visual representation for it (an
environment, or at least a background-image). Of course controlling the event-execution directly
from the scene does not prevent adding features to it, but by separating it to a different component
making that single class too complex could be better avoided.

Finally, as noted already along the presentation of the current design / implementation,
the special powers of the Python object model should be utilized when implementing the
event/command/action system in that language. That is, on the one hand, that there’s a remark
that the command pattern (as used in C+ or Java) may be redundant in Python, where all
functions already are objects too (Eckel n.d.b). And on the other hand, vice versa, that all objects
can be made callable (like functions and methods are), as demonstrated by the Freevo2 event-driven
menu system, where the menu items have possible actions and are callable, calling them resulting
to executing the default behaviour (Meyer 2005). How to utilize that here is left for future work.

6.2 Usage procedures

A way to evaluate the construct is to examine the procedures required for using it. Firstly, using
this version, only the Blender game engine is supported, so all data (models, animations, scene
setup) to be used in a performance must be in Blender. Secondly, it must be configured in Blender
in a certain manner. Finally, the setup has to be made to define what material is in use and how.
In the following, each of these steps is reviewed.

42

6.2.1 Having the Data in Blender

As described when presenting the design and implementation, any Blender object (i.e. a 3d object)
can be ’made a Mover’, i.e. specified as a target of control for this system. The data can be either
created in Blender from scratch, using the modelling and animation tools it provides, or either
partially or fully imported from other tools, or motion capture data etc. Based on the usage of
this system, Blender appears to cover the required procedures for preparing a set of data for a
performance well. As the future of its real-time engine is uncertain, and it has shortcomings in
both features and programmability, a move to another engine might be needed. In that case, it
would seem now desirable to support having Blender as a preparation tool anyhow (composing),
even if the actual performance tool (instrument) would be on another basis.

Yet a remark on preparing content (for performances): creating 3d animations generally takes
a lot of work, and it may be hard to achieve expressive results. Very little in this work is
actually related to 3d animations themsevels, but more on general controlling logic of anything,
and especially (looping) time-based content. So for continuing work there are logical steps to take
in two directions: (1.) try the system with other kinds of content, e.g. 2d objects / characters or
video (the latter is possible with the animated textures even in the Blender engine, and has been
examined with other engines, see http://studio.kyperjokki.fi/engine/VideoTextures) (2.) develop
features that support better use of 3d animations (the initial attempts to use BVH motion capture
data failed, but new support for it has been added to Blender since and it might already work).

This difficulty in having (large amounts) of quality content brings us to an interesting cultural
phenomena, that has so far been neglected in this technology-centered work, and was not explicitly
realized when developing the system. VJ culture, much like DJing before it, is often about so-called
sampling, i.e. using short pieces of existing work made by others to compose the own whole that
(in this case) is born live in the performance. In VJing, these ’samples’ are simply short video
clips, often taken from well-known TV shows or films, or even commercials or news broadcasts,
which are then put to a different context. Now, sampling audio or video is easy. But re-using
3d characters and animations in this way is not common at all, may be technically difficult and
probably questionable also legalwise. Perhaps we will see interesting developments in this area in
near-future, and who knows what is happening in some underground scenes somewhere, as in some
subcultures popular well-known figures, like game characters, have been embodied as 3d objects
with animations for long. Also, one VJ gig in the Koneisto 2004 festival featured using photos of
Finnish politicians faces as textures of the heads of simple block 3d characters, combining the ease
of sampling of 2d graphics (there photos) with the use of 3d models. More elaborate discussion on
this is outside the scope of this work, but the author is looking forward to learning more about it.
For studies covering the cultural side too, see http://vj-book.com/ .

6.2.2 Configuring Blender objects for Mover

Besides the actual creation and/or importing of the needed data in Blender, certain configuration
must be made for the controlling system to work. These steps are described here briefly, also to
allow their critical examination and identifying possibilities for improvement.

For one, each Blender object (mesh or armature) to be made a mover, must initialize itself in
a particular way. For that, a so called property sensor is used to run the initialising script
(initmover.py). This occurs when that object is added to the active layer, i.e. showed. The
initialisation registers the object and calls the invoke method which prepares the animation control

http://studio.kyperjokki.fi/engine/VideoTextures
http://vj-book.com/

43

system etc. So called cloning, i.e. adding several instances of the same object (which are all
actually copies of the original one, that remains hidden on another layer), is also detected by this
initialisation script and handled as special cases to e.g. position the clones correctly. So the user
must make sure that calling this initialisation script is made correctly, for every kind of object
used. This would be unnecessary on more freely programmable engines, where the execution of
needed procedures could surely be made the default action on all added objects without the user
needing to configure anything.

Similarly, the actuators that must be used in the Blender game engine to execute almost any
action, must be added to every object. The author is unaware of any possibilities to add actuators
by programming, without extending the Python API of Blender. Currently, minimally three are
required, and they all must be named specifically for the controlling script to be able to find the
references to them. These are a so-called motion actuator named “move”, a so-called IPO actuator
named “ipo” for different manipulations and an edit object actuator with the action of deleting the
object, named “endobject”.

Additionally, for armatures which have actions for animations, as many so-called action actuators
must be made as are to be used concurrently. Also, this number of action actuators must be declared
in an integer property (attribute) of the object named as “maxacts” (for movers without actions,
this must be set to zero). The action actuators must be given names in the form for “animatesn”,
where n is the order number of the actuator, up to the amount defined in the “maxacts” property.

Obviously, all this would be unnecessary in a different system, that enables the program to do
all necessary initialization for itself. However, within the limits of the Blender game engine and
the strict deadline for the first prototype, the solution is not without merits. As described when
presenting the design and implementation, the control system achieves the goal of supporting any
number of animations and using several of them at the same time both on a single object and for
several of them. Compared to a system where the ’composer’, or the person / user making the
setup, would e.g. have to create and dedicate animation actuators for every action separately, this
is much more elegant especially when taking into account that control mappings (e.g. keybindings)
would then probably have to be defined separately too etc.

In conclusion, it seems justified to say that the system that was designed and implemented
achieves the level of usability and flexibility/power required. Users should be well able to use
it without needing to know about programming, and not having to specify any such logic. The
unfortunately necessary steps described above are straightforward and similar for every object, so
the required configuration should be easily put in place by using existing ones as examples. If this
implementation, using the Blender game engine, is to be developed further, there are possibilities
for enchancements by e.g. extending the API to support creating actuators. Also, as noted when
describing the design and implementation of the Scene class in this work, a Scene class has been
recently added to Blender itself, and could probably be used to automate many of these initially
manual steps.

6.2.3 Making the setup

As described in the chapter about design and implementation, the setup file with the definitions
of the movers and keybindings is meant to be editable by the users. There one must write the
names of the objects to define their order for keybindings, and again defining their motions with
the framecount and the name of the bone to be directly manipulated. The keybindings are defined

44

by mapping control codes of the keys to Python dictionary (hashtable) entries, which include either
references to instances of the special event class or instanciate them in place. Such arcane activities
are of course not at all what is expected from a modern user interface. But the goal here is different:
not something for anyone to use, but a specilized tool for those who know what they want, and
need extreme flexibility of it. Therefore the setup file is a genuine source file, Turing complete one
might say, and the system sets basically no limits to what can be programmed there. Security has
not been a concern, as the first prototype was a standalone application on a single computer, with
no use of networking, and the planned networking is with trusted peers. The aim is that engine
specific implementations and general mechanics could be isolated in the library, leaving the focus
with the setup file to artistic concerns, without sacrificing any power of expression.

On the other hand, as Blender itself has taken steps to allow making interactive 3d, e.g. games
and art, by not-programming, with the use of so-called logic bricks, this system could also try
to take more advantage of that (instead of only trying to find ways around the limitations set
by that system). For example, as the game logic editing in Blender already has a nice interface
for defining keybindings, that could be perhaps used somehow. Elaborating on that example, a
goal (yet unused, but the implementation supports it) with the way of defining keybindings in
this system was that they should be easily redefineable anywhere, so that e.g. a special mode
could be defined for even a single movement of a particular kind of object. Not compromising
this, but achieving better integration with the existing GUI in Blender, would be an interesting
future challenge. And as mentioned in the chapter on design and implementation, the controllers
(especially if/when MIDI support is added) should be refactored to something like the keybindings
mapping dictionary.

6.3 Use of the prototype

6.3.1 VJing In Time Tunnel X

Basically the first use of the prototype, the event which set the deadline for this phase of
development, was a success in the sense that the system worked: it was usable and did not crash
or otherwise misbehave, and the content made for it contributed to the overall performance. Of
course, there were and are several issues that must be critically observed.

Firstly, the system was (and is) yet too cumbersome for a satisfying solo performance. This was
acceptable and even planned for this event, where we performed as a group and actually each
unit had the same limitation, but is a serious limitation anyhow and should be set as a target to
overcome in future development.

A contributing factor to this is that there is no mechanism for dealing with the scene, or
backgrounds, just the actual objects (’movers’) on a black screen. This is suitable for a group
performance, where the output of this system is mixed with others, and one of the best moments
in the event (for the author) actually was being able to control the own character in a video (pre-
captured from a video game). Anyhow, dealing with scenes, e.g. having props in the environment
where the characters are, and/or using background images (or videos, of the engine supports) are
clear areas to work on.

Another way to facilitate solo performing, and more fluent and dynamic use in general, can be
drawn as a lesson learned from the earlier work with PixelShox (mentioned in the chapter on
related work). There the real-time actions are typically turning on/off, or switching in between,

45

so-called effects (besides controlling them). Those ’effects’ in PixelShox are typically whole scenes
that are visually interesting right away, so they can be simply activated in a performance, and then
be worked with via the controls to suit the situation. In the first use of the system studied here that
was not possible, but a basic configuration had to be first put in place by the performer ’off-line’,
not in public, before it was in shape to show — then it could be worked on further in the live
performance. The basic system should allow for such presets, i.e. having a functions (made as an
event encapsulating the required actions, mapped to some control) that e.g. first empty the scene
and then add certain objects to certain positions, set their orientation and other state the correct
way etc. This is, however, yet untested and of course also an area with unlimited possibilities and
amount of potential work (in e.g. developing the logics of the behaviours).

So a main criticism, due to these limitations, of the first use of the prototype was the unability of
the performer to react. If the output of this system was shown in public, no dramatic changes to
its scene could be made, as it would have required manually working with intermediate situations
that would have been not suitable for a show.

Secondly, the content was limited in both quantity (amount of objects) and the quality (the
expressioness of the animations). This is not totally unrelated to this study of the technical
system, as it currently supports only 3d objects in Blender, animated using the action system
which uses the armatures. Making such content, especially in the large amounts sometimes needed
for gigs lasting even six hours, is not easy and not much such content is readily available. The
possibilities of using 2d graphics and animation and video footage, utilising motion-capture data,
and the controversial potential in the so-called sampling of 3d objects and animations, as mentioned
in the evaluation of having the data in Blender, are some ways to deal with this difficulty in the
future.

6.3.2 Peer Review: Perceptions of Fellow VJ Application Developers

As the program is open source, a way to evaluate it are critical comments from interested parties.
A window of opportunity for this opened on March 16th 2004, when a person using the pseydonym
’pildanovak’ posted a message about ’Blender as a VJ-ing tool’ on the Blender development forums
(http://www.blender.org/modules.php?op=modload&name=phpBB2&file=viewtopic&t=3202).
He had made a system himself, and asked if there are others with similar ideas and interest for
developing it further. Some other people reacted with enthusiasm, and told about their work in
different areas (midi control modules and VJing setups). The author of this work participated in
the discussion, mentioning the development of the software construct described here. ’Pildanovak’,
who can be regarded as a competent judge having developed a system for similar purposes with
the same tools himself, said: “i’ve tried the kyperjokki files, they work fine, and the code is nice
written. the operations done with the objects are nice, but i’m not sure if this kind of operations
is universal enough. Thanks for sharing.” Later Pildanovak released a new BlenderVJ tool where
any Blender scene with animations can be made MIDI-controllable, and the author of this work
got the idea of fitting Mover to be a special type of scene in that system.

6.3.3 A remark from a Puppet-maker

On an occasion during the winter of 2003-2004, the author had a chance to demonstrate the system
briefly to a full-time professional puppet-maker. A main reaction was to the cloning functionality,
as crafting several (especially very similar) physical puppets by hand for group scenes is not so

http://www.blender.org/modules.php?op=modload&name=phpBB2&file=viewtopic&t=3202

46

rewarding. On an afterthought this is not surprising, as it truly is an area of functionality where
computer-based systems excel, and also in movie-making computer generated scenes have been
used largely to create mass scenes. Furthermore, there a lot of work has been put into creating
variety, in the form of random deviations in structure or movements to create an illusion of a social
crowd of independent actors. This is surely something to keep in mind when identifying areas for
future development.

6.4 Use for non-performance purposes in the Wireless Airguitar project

In parallel to this internal development project, targeted initially at live performances using large
screens and powerful computers, this work was related to another project developing applications
and content for mobile phones. That project was called The Wireless Airguitar, the Airguitar
World Championships organized by and during the Oulu Music Video Festival.

There a part of the project was to make animated characters play airguitar so that they would
be visually suitable for the small displays of mobile phones. Therefore a low-polygon model with
clear characteristics was made, and animated with guitar-playing movements. The same model
was actually used in the performance too, but with different animations (as in that event there was
no guitar music), taking advantage of the cloning function to utilise the larger display area (as the
more powerful desktop computer easily allows animating several such characters simultaneously).
This contributed to the ideas about combining both public displays and mobile usage in the same
system, elaborated in the coming subsection about sketching the First and the Last.

Later in autumn, small animations with the airguitar theme were made for mobile phones, using
that model and the system presented here. This performance system actually did not support
making those animations — the author just set clones of the model suitably and animated them
with the performance controls (taking advantage of the possibility to shift the animation phases
of the clones), and captured the frames as images to be packaged as an animation. The built-in
sequence editor of Blender could have been used instead, and probably using this tool was practical
for composing and recording animation only because the author was familiar and comfortable
with the tool. However, as research done elsewhere (Boulic et al. 1993) suggests that adjusting
animations in real-time is beneficial in making animations too, and this system has been designed
with the possibility of recording, editing and playing back the events in mind, there is potential in
such usage. A game-to-IPO utility exists for Blender, that can be used to bring animations from
the realtime engine back to the animating side.

6.5 Component re-use

As the limits of the Blender game engine were known, and the applicability of different engines for
different purposes and in different environments recognized, a goal in programming was to have
reusable components that could be used with other engines too. For the core functionality, this is
possible by having high-level logic that does not depend on the interface to the engine that actually
executes the action. Same goes for the setup configuration. These are implemented as external
Python modules, that the Blender project uses, so they could be used by other engines too. Mostly
only Blender specific sensor readings and object initialisations are within the Blender project file,
unaccessible for other applications. On the content side (models and animations), reuse in other
engines is enabled by converters (import&export plugins), which exist for several engines already
and can be written for basically any.

47

However, akin to the agile programming principles a) do the simplest thing that could possibly
work and b) ’you aint gonna need it’, no (or very little) extra work was done for having the program
actually work with other engines, as using it with the one specific engine was the definite primary
goal in the stage of the development looked at here. The idea is that when other engines will
actually be needed, the required modifications can and will be done. And if that anticipated need
never concretisizes, no work has been wasted in preparation and most importantly: the program
has not been made more complex in vain (possibly to the extent of not having it work at all).

Yet, several components could straightforwardly be made engine independent to begin with.
These include the controls-to-actions mapping Event classes, the Control abstraction and the
RhythmMaster and TimeCode used for animation control (could be used for e.g. video too).
Therefore, they could be used in other projects with other engines straight away, so that
enhancements in e.g. time code control would apply when using in Blender, too.

The state-encapsulating Scene class, the Mover class and especially CharacterAnimation include
both Blender independent and specific attributes and methods, the latter being about using
GameObject properties and the GameLogic actuator mechanisms. For reusing these classes across
different engines, the common and specific parts should be separated.

6.6 Review of the research questions

To conclude the evaluation, it is now time to return to the research questions presented in chapter
two, to see if and how they can be answered.

All in all, to address the main question, this work presents one solution to the problem of making a
system for controlling 3d character animations in live performances. With respect to the conditions
set by the time and people resources, the use of a ready made, stable or at least relatively well-
known 3d engine with support for high-level, or agile, programming made the development possible
within a few weeks by one person. Also the lightweight software process, inspired by the extreme
and/or agile programming movement, enabled rapid progress, while guaranteeing the delivery of
a working product (as one was ’released’ at least by the end of the day, every working day on the
project). Furthermore, the use of a real-time engine that is included in the content authoring suite
used, namely Blender, made it straightforward to create and add new models and animations to
the system, and to modify them afterwards.

Regarding the subquestions, firstly, the system supports controlling many things at the same time
via the unconventional notion of ’events’ (for the lack of a better word so far), referring to the
things that can happen (potential events) or are currently happening (active events) in the virtual
scene. The users are expected to author the setups by programming such events, that can affect
any aspect of the scene and many things simultaneously. The special so-called mover events are
used for controlling the movable visual objects, which in this case are typically equipped with
skeletal character animations. By default, the mover events affect all active movers in the scene.
Thereby, they can be used to control several things at the time. Additionally, so-called phasing
was implemented to the movement of the so-called clones, i.e. replicated movers, so that the user
can control with a slide (currently mouse y axis) whether the clones animate synchronously or
differently. Interestingly, as reported with the description of the clone phasing component, that
mechanism can be seen as utilizing the notion of similarity in gestalt theory, which proposes also
other high-level concepts for perception of forms and structures, such as proximity and closure
(Wertheimer 1923). Based on that, similar dynamic structures that emerge as perceived closeness

48

/ nearness, or beloning / not-belonging, etc. in the scene could be built, and controlled by the
perfomer, potentially achieving great expressiveness. Gestalt theory has become a modern classic,
and been applied in several areas, including graphical design of software user interfaces and also
machine vision, so there is a healthy amount of literature to draw from when applying it in software
(Moore & Fitz 1993).

Secondly, moving to the music was implemented by having two special supporting classes to be
associated with the scene, namely TimeCode and RhythmMaster. This time model was targeted for
short looping content, such as individual movements in character animation, the model being simply
that the range of the timecode is from 0 to 1, from beginning to end. The RhythmMaster can be
given the tempo of the music in beats-per-minute (bpm), which is a common format in dance music,
and also be fed with beat messages, which are triggered by the user in the first implementation
by tapping a key, but could as well be sent e.g. from an automated audio analyzer. Based on
that information, the RhythmMaster adjusts the timecode accordingly, which the animations then
use for determining their playback. Also, controller devices (via the controller/slide abstraction)
can be used to determine the timecode directly, overriding the use of the RhythmMaster (in the
current implementation the tabulator key toggles this mode, and maps the mouse x axis to the
timecode when enabled). These ways enabled ’moving to the music’ in practice adequately in the
dance event where the first implementation was used. Also, as there is nothing character animation
specific in the timing, this model can probably be well reused with other kinds of content, perhaps
when having video loops is implemented in the system.

Additionally, outside the core requirements but coming from the wishlist, logging the sessions (as
inspired by Arkaos) is supported by having all action being driven by the aforementioned events.
To store and replay the use of this system, it should suffice to save the information about the
starting and stopping of these events, and all the values of the controllers. This has not been
implemented yet, but as all the events must either subclass or instanciate Event, it can be done
afterwards by adding the required code to that superclass, and to the component responsible for
dealing with the control values.

7 Future Development

Practical work to be done is presented in two ways in the following. First, the short-term plan
to refactor the core is outlined. Then, different directions for long-term future development are
identified.

7.1 Refactoring the core

The evaluation of the so-called event system concluded in a recommendation to refactor it. To
begin with, it should be conceptualized at least a little differently. As for implementation, the
required minimum change is simply renaming the abstract base class (currently Event) and the
implementing subclasses (such as SelectMover, TurnMover, ScrubMode and BeatTap). As noted
in the evaluation, feasible possiblity is to try simplyfying the idea behind these so-called events
and resort to the more straightforward, well-known and hopefully easily understandable concept of
command, and to some extent the design pattern that goes by the same name (Gamma et al. 1993).

In doing this, however, the richness of the concept of event, and related concepts, should
be embraced. For this to result in meaningful structures, the relevant literatures — largely

49

in humanities, the author supposes — should be consulted. Also, closer to the practical
programming, lessons learned from this first implementation should be analyzed. Centrally, the
current implementation demonstrates events, or commands-to-become, with very different targets
and timespans (the examples mentioned above were selected to demonstrate this). It is now
implemented by specifying different types of bindings from the controls to the events/commands,
namely the types WHENPRESSED, TOGGLE and ONCLICK presented in the part on the setup
file (which are then actually handled in the controllers module within the Blender project file,
which is not described in this work). This means that the events/commands themselves don’t
know anything about their duration (although some of them surely assume some of it in their
behaviour, i.e. some of the mode-events don’t actually launch any actions, and on the other
extreme, long-spanning actions may include a state-machine which would be useless if would be
activated once only (which the ONCLICK binding does)). On the other hand, this enables reusing
the same events in different kinds of bindings trivially (e.g. both ONCLICK and WHENPRESSED
bindings may well be useful for some manipulations).

There is also a way to introduce the notion of commands, and yet keep the event-construct
(although a better name for it would still be welcome). In this model, the commands would
probably be very simple, and one thing they could do would be activating and de-activating events.
In this case, if e.g. how modes are currently implemented is not seen as useful to do with the event
system, there could be some other mechanism for that that the command system uses (perhaps
just commands to set the modes).

Anyhow, some change is required. Therefore, the author wishes to delay the actual release of the
program untill this refactoring is done. It does not necessarily have to be a lot of work: as noted
in the evaluation, many of these so-called events are like commands already. Furthermore, the
base classes and basic functionality around them total in probably only tens of lines code, in any
case probably less than a hundred, it’s all pretty simple and no great changes would hopefully
be required. The author estimates that this could be done in a single work day, perhaps another
day for testing (or vice versa, if this project can finally switch to test-driven development!), and
re-thinking and refactoring. So this is identified as an early next step.

7.2 Different possible directions with various technologies

There are several possible ways for future development with respect to distinct usage scenarios. At
least in the author’s view, each of them entails, or in a way bundles, technology selection. However,
this being about software, the selections are not mutually exclusive. In fact, their integration is well
possible, even foreseeable. Yet, especially within the limits of a single developer, choices regarding
focus and priorities must be made. In the following, three different paths are described shortly.
After that, some notes about their interplay are made, with respect to the discussion on component
re-use in the evaluation.

7.2.1 Authoring for non-programmers via Blender-integration (’BlenderVJ’)

One way to target future development based on the work here would be continuing to use the
Blender game engine and adding more support to the features it has. Let this approach be be
codenamed ’BlenderVJ’, as the nickname Pildanovak called his system that was discussed in the
chapter evaluation with peer review. Along this route, it would probably be wise to integrate

50

with the other parts of Blender too, also to support relatively straightforward authoring by non-
programmers via the graphical user interface.

Pildanovak’s BlenderVJ originally (in 2003) used the Blender game logic system heavily, including
message actuators etc., unlike in the system presented here, where pure Python has been used for
communicating between objects. With a new version, published in late 2004, BlenderVJ started
using the newly added library support in the Blender Python API, which enables linking other
projects (.blend files) to one project. This way, the project file that includes the presentation
engine mechanics (in case of BlenderVJ, mostly the MIDI input support), does not need to include
and content, which can be in several separate project files. Moreover, the gamelogic message
actuators work between when scenes in different projects, so that input control values (e.g. from
MIDI) can be received from the engine in the project files with the content. This way, any Blender
scene, which is e.g. animated with IPOs, can be made interactively controllable for VJ use, with
controls to switch with scene is active, with no programming required (the Blender logic brick
editing suffices). After this change, also the work presented here, KyperMover, might be work
as such a scene under Blender VJ. The author gave a presentation of both these tools, thinking
about the future developments, in the Blender conference 2004 — for more info about that, see
http://www.blender3d.org/cms/Toni Alatalo.442.0.html .

7.2.2 Good programmability of high-level features with Soya (’Play’)

Another way would be to re-implement the system using the Soya 3d engine. An immediate
benefit of this would be getting to use the Cal3d character animation library, which is more
advanced than the character animation playback with armatures and actions in the Blender game
engine, supporting e.g. blending several movements affecting the same bones at the same time.
Furthermore, in the new examples in the tutorials of the recent (spring 2004) 0.7alpha release of
Soya, there is an even more advanced example of character animation with Cal3d, where an item
is dynamically added to the hand of a character (as demonstrated in the character-animation-2
tutorial by the soya project).

However, the author has found the application programming interface (API) even more promising.
Soya targets at being a very high-level engine, and provides really elegant methods for creating
and controlling 3d scenes and objects. The author of this work believes that this would be a great
help in the development of advanced features for e.g. positioning the different movers interestingly
and making them interact with respect to each other, the environment and to different user input
controls. Moreover, there seem to be no limits to what the engine can do. For example, using the
Blender game engine, there is no way to (at least currently, to the author’s knowledge) to add new
kinds of objects during runtime — only pre-modelled objects can be added to scenes (and even
than can be done only via so-called addObject actuators which can be awkward programmingwise).
In Soya, there is a complete easy-to-use modelling API as a part of the library. This facilitates
the implementation of scenes such as the car-follows-road example described in the chapter on
requirements. Another interesting possibility is utilizing interactive procedural modelling, such as
L-Systems or other plant growing algorithms — the author of this work actually published a small
toy application featuring this in spring 2005, see http://studio.kyperjokki.fi/engine/SoyaPlant .

Also, Soya integrates well with Blender, as it is the modelling and animation tool that the developers
of the engine themselves use (for their own games). Not only are there mature tools for exporting
Blender models and character animations to be used in Soya, there is an editor for Soya worlds that
connects directly to Blender. Besides, the Soya API seems to be similar to the way Blender objects

http://www.blender3d.org/cms/Toni_Alatalo.442.0.html
http://studio.kyperjokki.fi/engine/SoyaPlant

51

are structured, and is probably inspired by it. This all means that concerning this project, little
effort would have been wasted when moving to Soya, as all the ready-made models and animations
could be reused, and new features for e.g. dealing with textures could probably be developed well
with respect to how they work on the authoring side.

Besides the possibilities of advanced real-time character animation and dynamic modelling
mentioned above, the author of this work considers Soya as good candidate platform for a system
with higher-level controlling logic than the system presented here. This refers to the discussion on
authoring in the evaluation chapter, with the mentioning of the concept of manuscript from screen-
/playwriting. Therefore this option is codenamed ’play’, referring to both gaming and theatre.

Surely there are other well programmable 3d engines too, such as Ogre3d, of which the version
1.0 was released in early 2005. It is powerful both in terms of visuality, utilizing the features of
current graphics cards, and in perfomance, being also a well structured programming library. It is
written in C++, but the Python bindings have recently (in early 2005) matured too, so that whole
projects can be implemented in Python too (leaving C++ necessary for cpu intensive parts only).
Considering the needs of this system, it has an own character animations system (i.e. does not
use e.g. cal3d), and there are export tools for e.g. Blender for getting the models and animations
into Ogre (and the author of this work did this succesfully in spring 2005, albeit little glitches in
the tools). Concerning the other needs of this ’play’ track, the author has not yet examined the
modelling API, but suspects that it is an elegant one. One planned way to learn more about it is
to port Soya experiments, such as the aforementioned plant toy, to Ogre.

7.2.3 Distributed system using VOS and/or Twisted (’DanceWorld’)

A third option for next step in the development would be to target networking first, before
any or much work on new features. Simple tests with remote controlling were already made
with the current engine in October 2003, when the author successfully triggered events/actions
on and off over an IP network. That model, where is still a single engine instance that
is just controlled from many computers, may be fit for VJing/ / live performance purposes
in a single physical space where everyone can see the same displays. Also several other
implementations, where a gameblender scene is controlled over the network, exist. One
implementation, that uses CORBA event service for synchronization, has been used for controlling
robots (http://people.mech.kuleuven.ac.be/˜pissaris/misc/blender/blendercorba.html).

However, having a true networked or even a distributed system would open more possibilities,
for e.g. connecting several events that are occurring simultaneously in remote places, via a
virtual world. The author has some experience in performing in such events, when participating
in so-called net.audio co-streaming sessions organized by Xchange (http://xchange.re-lab.net/).
Also, the author has made some experiments in this direction as a part of the yearly Airguitar
Worldchampionships event (as reported in http://www.nettime.org/Lists-Archives/nettime-l-
9908/msg00132.html).

A technology for distributed computing, targeting mainly collaborative 3d worlds, is the Virtual
Object System (VOS, http://interreality.org/). For the purposes here, it suffices to say that it
enables having 3d scenes shared as in networked computer games, but also so that parts of the
scenes (e.g. certain avatars i.e. characters) may reside on different computers and be not controlled
by a central server (i.e. it enables peer-to-peer communications too). There is a VOS plugin for
the open source 3d engine Crystal Space, which enables moving around in the worlds.

http://people.mech.kuleuven.ac.be/~pissaris/misc/blender/blendercorba.html
http://xchange.re-lab.net/
http://www.nettime.org/Lists-Archives/nettime-l-9908/msg00132.html
http://www.nettime.org/Lists-Archives/nettime-l-9908/msg00132.html
http://interreality.org/

52

Both the reference VOS implementations (e.g. the vosworld server) and all of the Crystal Space 3d
engine and the VOS plugin for it are all written in C++, with performance in mind and utilizing
threading. This means that they are relatively high-performing pieces of software. However,
conserning the needs of the project described in this work, writing C++ would be an unnecessarily
low level task, as the author would have to start worrying about the details of memory management
and be encumbered by an inferior (less flexible) object model and the lack of built-in data structures
such as lists, dictionaries and sets of Python. Now in early 2005 early Python bindings have been
introduced for VOS, but the author has not studied them in more detail.

The contents for VOS worlds are also created with Blender, and Cal3d is also the default character
animation library in Crystal Space, so the remarks about the interplay with Blender that were
risen when discussing Soya hold at least partially here too.

Besides VOS, there are numerous other technologies for distributed computing. One that the
author has evaluated and experimented with is called Twisted, which is an event-based (and can
be ran in a single process without threads) networking framework written in Python, and suitable
for e.g. network games (also various chat protocols and basically all Internet service protocols have
been implemented with it). The distributed object system for Twisted is called Spread, and it was
been implemented at least in Java in ELisp too (http://twistedmatrix.com/products/twisted). So,
instead of VOS, Twisted could be used to network/distribute the KyperMover or some continuation
of it. Another option might be implementing the virtual object protocol (VOP) of VOS with
Twisted, to enable making VOS applications in Python without having Python bindings for the
C++ implementations of it. Also, regarding on-line live performances, the recently released system
called Upstage is also an interesting candidate for integrating the system described in this work.
The Upstage server is written in Python using Twisted, but the client is (a 2d engine) written in the
ActionScript of Macromedia Flash, so it runs without installing anything in many web-browsers
which is a major benefit when considering participatory web events (such as the play-togethers
of the airguitar world championships event). Yet, regarding networked gaming, the Soya project
released a Twisted-using library, called Tofu, in early 2005. It is still early in development, but
works at least for some applications.

7.3 Strategies for the interplay of the different areas

A resulting challenge from the exploration of the different areas , where future development could
be made, is their interplay. Obviously, having nice authoring for non-programmers, enabling good
programmability for the underlying library and performance logic, and networking the system to
be a collaborative virtual environment are not mutually exclusive goals. But making the pieces so
that they fit together is not a trivial challenge — especially if simultaneous support for different
solutions (e.g. different 3d engines, or even 2d and 3d engines at the same time).

As mentioned in the section on evaluation of code reusability, there are different well-known
strategies for achieving platform independent for interoperable pieces of software, such as definining
interfaces that different classes can implement and the model-view-controller pattern. Evaluating
their usefulness, which probably demands experimentation, for the future development of this tool
and VJing applications in general, is left for future work.

http://twistedmatrix.com/products/twisted

53

8 Conclusions

A tool that addresses the research questions was developed and used by the author, and is published
for others to see and use too. The development opened a plethora of new questions, with directions
for looking solutions in different literatures.

Initially, the question was simply how to make a system for controlling 3d character animations
in live performances / for VJing (as none such tools were seen to exist). Then, a first issue was
the actual controlling mechanism. It was seen that some abstraction that maps controls to actions
would contribute for a good design. This was implemented as so-called events. Later in evaluation
this changed to a recommendation for considering the command pattern, with the lessons learned
from the usage of the structure made in this system in mind.

No use studies were made, but experiences from usage suggest that the prototype filled the
initial limited need successfully, proving the design and implementation basically viable. Central
weaknesses were identified, including the system being too limited for solo perfoming and too
cumbersome for the performer to react. To solve those issues necessary areas of improvement were
seen to include dealing with scenes with backgrounds and having preset configurations which are
immediately visually compelling. There are also issues in having adequate content, both in quality
and quantity. Then again, there are other use purposes for this kind of tools, described in more
detail in the chapter on evaluation, where the aforementioned demands are not as great, such as
trying out ideas for other projects and use of the computer-generated visuals to complement shows
with other elements (like physical puppets).

As a conceptual result, the principle of similarity from Gestalt theory was found to frame the so-
called clonephasing implementation fruitfully, so that new functionality could be designed based
on the other concepts there, such as proximity, closure and simplicity. Obviously many other
literatures, supposedly the ones on dance and theatre, would have much to give too.

Future challenges include a variety of issues in several possible directions, ranging from the
refactoring the core of the system itself to the integration of it to other systems, such as Blender and
possibly other authoring tools, other real-time engines, controller device interfaces such as MIDI,
and shared computing platforms for networked collaboration. All these related areas of technology
develop continuously, and a central challenge for future work in this area are the strategies for
making them all work together.

References

Abouaf, J. 1999a. Biped: A Dance with Virtual and Company Dancers, Part 1.. IEEE MultiMedia.
Vol. 6 no. 3., 4–7.

Abouaf, J. 1999b. Biped: A Dance with Virtual and Company Dancers, Part 2.. IEEE MultiMedia.
Vol. 6 no. 4., 5–7.

Badler, N., Allbeck, J., Zhao, L. & Byun, M. 2002. Representing and Parameterizing Agent
Behaviors. In Proc. Computer Animation, IEEE Computer Society. Geneva, Switzerland.

Badler, N. I., Palmer, M. S. & Bindiganavale, R. 1999. Animation control for real-time virtual
humans. Commun. ACM. Vol. 42 no. 8., 64–73.

54

Beck, K. 2000. Emergent Control in Extreme Programming. Cutter IT Journal. Vol. 13 no. 11., 22–
24.

Bindiganavale, R., Schuler, W., Allbeck, J. M., Badler, N. I., Joshi, A. K. & Palmer, M.
2000. Dynamically altering agent behaviors using natural language instructions. In International
Conference on Autonomous Agents. 293–300.

Boulic, R., Huang, Z., Magnenat-Thalmann, N. & Thaimann, D. 1993. A Unified Framework for
the Motion Manipulation of Articulated Figures with the TRACK System. In Second Conf. on
CAD and Graphics. Beijing.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. & Stal, M. 1996. Pattern-Oriented
Software Architecture, Volume 1: A System of Patterns. John Wiley Sons.

Dannenberg, R. 1989. Real Time Control For Interactive Computer Music and Animation. In
Proceedings of The Arts and Technology II: A Symposium, Connecticut College. 85–94.

Dannenberg, R. & Bates, J. 1995. A model for interactive art. In Proceedings of the Fifth Biennial
Symposium for Arts Technology. 103–111.

Dannenberg & Rubine 1995. Toward Modular, Portable, Real-Time Software. In Proceedings of
the International Computer Music Conference. 65–72.

Eckel, B. n.d.a. Thinking in Patterns with Java. Work in progress at
http://mindview.net/Books/TIPatterns/.

Eckel, B. n.d.b. Thinking in Python. Work in progress at
http://www.mindview.net/Books/TIPython.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. 1993. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

Goto, M. & Muraoka, Y. 1997. Issues in evaluating beat tracking systems. In Working Notes of
the IJCAI-97 Workshop on Issues in AI and Music.

Gregor, S. 2004. Evaluating contributions to information systems design theories. A presentation
in the INFWEST.IT seminar on constructive research.

Hevner, A., March, S., J, J. P. & Ram, S. 2005. Design Science Research in Information Systems.
Management Information Systems Quarterly (MISQ). Vol. 28 no. 1., 75–105.

Jarvinen, P. 2003. On research methods. University of Tampere.

Kujanpää, T. & Manninen, T. n.d.. Supporting Visual Elements of Non-Verbal Communication
in Computer Game Avatars.. In M. Copier & J. Raessens, eds, Proceedings of Level Up - Digital
Games Research Conference. 220–233. Universiteit Utrecht.

Lieberherr, K., Holland, I. & Riel, A. 1988. Object-oriented programming: an objective sense
of style. In OOPSLA ’88: Conference proceedings on Object-oriented programming systems,
languages and applications. 323–334. ACM Press. New York, NY, USA.

Lippe, C. 2002. Real-Time Interaction Among Composers, Performers, and Computer
Systems. In Information Processing Society of Japan SIG Notes. Vol. 123. Available:
http://www.music.buffalo.edu/faculty/lippe/pdfs/Japan-2002.pdf 1–6.

55

Meyer, D. 2005. Action class for items: freevo/ui/src/menu/action.py. Available from
svn.freevo.org.

Moore, P. & Fitz, C. 1993. Gestalt Theory and Instructional Design. Journal of Technical Writing
and Communication. Vol. 23 no. 2., 137–157.

Petros Faloutsos Michiel van de Panne, D. T. 2001. Composable Controllers for Physics-Based
Character Animation. In Proc. SIGGRAPH.

Puckette, M. 1991. Something Digital. Computer Music Journal. Vol. 15 no. 4., 65–69.

Solano, M. B. 2004. Towards an aesthetics of cognitive systems: a post-humanist perspective for
cognitive studies of improvisational dance with dynamic real-time multimedia environments. Ohio
State University.

Wertheimer, M. 1923. Laws of organization in perceptual forms. First published as Untersuchungen
zur Lehre von der Gestalt II, in Psycologische Forschung. Vol. 4 , 301–350. Translation published
in Ellis, W. (1938). A source book of Gestalt psychology (pp. 71-88).

Zongker, D. E. & Salesin, D. H. 2003. On Creating Animated Presentations. In D. Breen & M. Lin,
eds, Eurographics/SIGGRAPH Symposium on Computer Animation. New York, NY, USA.

	Introduction --- computer based systems for live performances
	The Research Method Used --- Constructive Research / Design Science
	Related Work --- Systems for Live Performances and Character Animation
	Software Applications for Visual Live Performances
	Character animation

	Requirements for the System
	Locus of Control
	Requirements for 3d character animation
	Requirements set by the operating environment
	Technical requirements
	Features wish-list
	Selected primary requirements

	The Design and Implementation
	Selecting the 3d engine
	Blender and its game engine
	General architecture
	The Class Library
	High-level Events map Controls to Actions
	Movers in Scenes
	The Animation System --- working around GameBlender peculiarities
	Clones
	Direct manipulation of bones
	Controllers
	Time
	Camera control
	Missing elements

	A setup file

	Evaluation
	Model / system (in itself & compared to others)
	Comparison of the event system with others
	Cognitive, user centered and authoring issues

	Usage procedures
	Having the Data in Blender
	Configuring Blender objects for Mover
	Making the setup

	Use of the prototype
	VJing In Time Tunnel X
	Peer Review: Perceptions of Fellow VJ Application Developers
	A remark from a Puppet-maker

	Use for non-performance purposes in the Wireless Airguitar project
	Component re-use
	Review of the research questions

	Future Development
	Refactoring the core
	Different possible directions with various technologies
	Authoring for non-programmers via Blender-integration ('BlenderVJ')
	Good programmability of high-level features with Soya ('Play')
	Distributed system using VOS and/or Twisted ('DanceWorld')

	Strategies for the interplay of the different areas

	Conclusions

